1 / 41

Pairs and Lists. Data Abstraction. SICP: Sections 2.1.1 – 2.2.1 Lecture notes: Chapter 3

Pairs and Lists. Data Abstraction. SICP: Sections 2.1.1 – 2.2.1 Lecture notes: Chapter 3. a. 2. 1. Box and Pointer Diagram. (define a (cons 1 2)). A pair can be implemented directly using two “pointers”. Originally on IBM 704: (car a) C ontents of A ddress part of R egister

becka
Download Presentation

Pairs and Lists. Data Abstraction. SICP: Sections 2.1.1 – 2.2.1 Lecture notes: Chapter 3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pairs and Lists. Data Abstraction. SICP: Sections 2.1.1 – 2.2.1 Lecture notes: Chapter 3

  2. a 2 1 Box and Pointer Diagram • (define a (cons 1 2)) • A pair can be implemented directly using two “pointers”. • Originally on IBM 704: • (car a)Contents of Address part of Register • (cdr a)Contents of Decrement part of Register

  3. Pair: A primitive data type. Constructor: (cons a b) Selectors: (car p) (cdr p) Guarantee:(car (cons a b)) = a (cdr (cons a b)) = b Abstraction barrier: We say nothing about the representation or implementation of pairs.

  4. Pairs (define x (cons 1 2)) (define y (cons 3 4)) (define z (cons x y)) (car (car z))  1 ;(caar z) (car (cdr z))  3 ;(cadr z)

  5. 4 3 1 2 Box and pointer diagrams • (cons (cons 1 (cons 2 3)) 4)

  6. Pairs have the closure property: • We can pair pairs, pairs of pairs etc. • (cons (cons 1 2) 3) 3 2 1 Compound Data A closure property: The result obtained by creating a compound data structure can itself be treated as a primitive object and thus be input to the creation of another compound object.

  7. 3 1 2 Lists The empty list (a.k.a. null or nill) • (cons 1 (cons 3 (cons 2 ’()))) • Syntactic sugar:(list 1 3 2)

  8. Formal Definition of a List A list is either • ’() -- The empty list • A pair whose cdr is a list. Lists are closed under the operations consand cdr: • If lst is a non-empty list, then (cdr lst) is a list. • If lst is a list and x is arbitrary, then (cons x lst) is a list. מבוא מורחב שיעור 7

  9. <x1> <x2> <xn> Lists (list <x1> <x2> ... <xn>) is syntactic sugar for (cons <x1> (cons <x2> ( … (cons <xn> ’() ))))

  10. 1 3 2 2 3 Lists (examples) The following expressions all result in the same structure: (cdr (list 1 2 3)) (cdr (cons 1 (cons 2 (cons 3 ’() )))) (cons 2 (cons 3 ’() )) (list 2 3) (cons 3 (list 1 2)) (cons 3 (cons 1 (cons 2 ’() ))) (list 3 1 2) and similarly the following

  11. 1 4 3 2 4 3 1 2 4 3 1 2 More Elaborate Lists (list 1 2 3 4) (cons (list 1 2) (list 3 4)) (list (list 1 2) (list 3 4)) • Value:(1 2 3 4) • Value:((1 2) 3 4) • Value:((1 2) (3 4))

  12. List of Symbols (shorthand) • ‘(a b c) translates into (‘a ‘b ‘c)

  13. p1 3 p 1 2 p2 Yet More Examples • (define p (cons 1 2)) • p2 ( (1 . 2) (1 . 2) ) • p (1 . 2) • (define p1 (cons 3 p) • p1 (3 1 . 2) • (define p2 (list p p))

  14. The Predicate Null? null? : anytype -> boolean (null? <z>) #t if <z> evaluates to empty list #f otherwise (null? 2)  #f (null? (list 1))  #f (null? (cdr (list 1)))  #t (null? ’())  #t (null? null)  #t

  15. The Predicate Pair? pair? : anytype -> boolean (pair? <z>) #tif <z> evaluates to a pair #f otherwise. (pair? (cons 1 2))  #t (pair? (cons 1 (cons 1 2)))  #t (pair? (list 1))  #t (pair? ’())  #f (pair? 3)  #f (pair? pair?)  #f

  16. The Predicate Atom? atom? : anytype -> boolean (define (atom? z) (and (not (pair? z)) (not (null? z)))) (define (square x) (* x x)) (atom? square)  #t (atom? 3)  #t (atom? (cons 1 2))  #f

  17. (define digits1 (cons 0 digits)) • digits1 • (define l (list 0 digits)) • l ? More examples • (define digits (list 1 2 3 4 5 6 7 8 9)) ? (0 1 2 3 4 5 6 7 8 9) (0 (1 2 3 4 5 6 7 8 9))

  18. The procedurelength • (define digits (list 1 2 3 4 5 6 7 8 9)) • (length digits) 9 • (define l null) • (length l) 0 • (define l (cons 1 l)) • (length l) 1 (define (length l) (if (null? l) 0 (+ 1 (length (cdr l)))))

  19. The procedure append (define (append list1 list2) (cond ((null? list1) list2); base (else (cons (car list1); recursion (append (cdr list1) list2)))))

  20. Constructor • Type: Number * T -> LIST(T) > (make-list 7 ’foo) (foo foofoofoofoofoo foo) > (make-list 5 1) (1 1 1 1 1)

  21. List type • Pairs: • For every type assignment TA and type expressions S,S1,S2: • TA |- cons:[S1*S2 -> PAIR(S1,S2)] • TA |- car:[PAIR(S1,S2) -> S1] • TA |- cdr:[PAIR(S1,S2) -> S2] • TA |- pair?:[S -> Boolean] • TA |- equal?:[PAIR(S1,S2)*PAIR(S1,S2) -> Boolean]

  22. For every type environment TEnv and type expression S: TEnv |- list:[Unit -> LIST(S)] TEnv |- cons:[T*LIST(S) -> LIST(S)] TEnv |- car:[LIST(S) -> S] TEnv |- cdr:[LIST(S) -> LIST(S)] TEnv |- null?:[LIST(S) -> Boolean] TEnv |- list?:[S -> Boolean] TEnv |- equal?:[LIST(S)*LIST(S) -> Boolean]

  23. Cont. • For every type environment TEnv and type expression S: • TEnv |- list:[Unit -> LIST] • TEnv |- cons:[S*LIST -> LIST] • TEnv |- car:[LIST -> S] • TEnv |- cdr:[LIST -> LIST] • TEnv |- null?:[LIST -> Boolean] • TEnv |- list?:[S -> Boolean] • TEnv |- equal?:[LIST*LIST -> Boolean]

  24. Export only what is needed. Interface Implementation Procedural abstraction • Publish: name, number and type of arguments • (and conditions they must satisfy) • type of procedure’s return value • Guarantee: the behavior of the procedure • Hide: local variables and procedures, • way of implementation, • internal details, etc.

  25. Export only what is needed. Interface Implementation Data-object abstraction • Publish:constructors, selectors • Guarantee: the behavior • Hide: local variables and procedures, • way of implementation, • internal details, etc.

  26. An example: Rational numbers We would like to represent rational numbers. A rational number is a quotient a/b of two integers. Constructor: (make-rat a b) Selectors: (numer r) (denom r) Guarantee:(numer (make-rat a b)) = a (denom (make-rat a b)) = b

  27. An example: Rational numbers We would like to represent rational numbers. A rational number is a quotient a/b of two integers. Constructor: (make-rat a b) Selectors: (numer r) (denom r) A betterGuarantee: (numer (make-rat a b)) a = b (denom (make-rat a b)) A weaker condition, but still sufficient!

  28. We can now use the constructors and selectors to implement operations on rational numbers: (add-rat x y) (sub-rat x y) (mul-rat x y) (div-rat x y) (equal-rat? x y) (print-rat x) A form of wishful thinking: we don’t know how make-ratnumer anddenom are implemented, but we use them.

  29. Implementing the operations (define (add-rat x y);n1/d1 + n2/d2 = (n1.d2 + n2.d1) / (d1.d2) (make-rat (+ (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (sub-rat x y) … (define (mul-rat x y) (make-rat (* (numer x) (numer y)) (* (denom x) (denom y)))) (define (div-rat x y) (make-rat (* (numer x) (denom y)) (* (denom x) (numer y)))) (define (equal-rat? x y) (= (* (numer x) (denom y))(* (numer y) (denom x))))

  30. Using the rational package (define (print-rat x) (newline) (display (numer x)) (display ”/”) (display (denom x))) (define one-half (make-rat 1 2)) (print-rat one-half)  1/2 (define one-third (make-rat 1 3)) (print-rat (add-rat one-half one-third))  5/6 (print-rat (add-rat one-third one-third))  6/9

  31. Programs that use rational numbers add-rat sub-rat mul-rat… make-rat numer denom Abstraction barriers rational numbers in problem domain rational numbers as numerators and denumerators

  32. Gluing things together We still have to implement numer, denom, and make-rat We need a way to glue things together… A pair: (define x (cons 1 2)) (car x)  1 (cdr x)  2

  33. Implementing make-rat, numer, denom (define (make-rat n d) (cons n d)) (define (numer x) (car x)) (define (denom x) (cdr x))

  34. Programs that use rational numbers add-rat sub-rat mul-rat... make-rat numer denom cons car cdr Abstraction barriers rational numbers in problem domain rational numbers as numerators and denumerators rational numbers as pairs

  35. Abstraction Violation Alternative implementation for add-rat (define (add-rat x y) (cons (+ (* (car x) (cdr y)) (* (car y) (cdr x))) (* (cdr x) (cdr y)))) If we bypass an abstraction barrier, changes to one level may affect many levels above it. Maintenance becomes more difficult.

  36. Rationals - Alternative Implementation • In our current implementation we keep 10000/20000 • as such and not as 1/2. • This: • Makes the computation more expensive. • Prints out clumsy results. A solution: change the constructor (define (make-rat a b) (let ((g (gcd a b))) (cons (/ a g) (/ b g)))) No other changes are required!

  37. Reducing to lowest terms, another way (define (make-rat n d) (cons n d)) (define (numer x) (let ((g (gcd (car x) (cdr x)))) (/ (car x) g))) (define (denom x) (let ((g (gcd (car x) (cdr x)))) (/ (cdr x) g)))

  38. How can we implement pairs? (first solution – “lazy” implementation) (define (cons x y) (lambda (f) (f x y))) (define (car z) (z (lambda (x y) x))) (define (cdr z) (z (lambda (x y) y)))

  39. Name Value p (lambda(f) (f 1 2)) ( (lambda(f) (f 1 2)) (lambda (x y) x)) ( (lambda(x y) x) 1 2 ) > 1 How can we implement pairs? (first solution, cont’) > (define p (cons 1 2)) > (car p) (define (cons x y) (lambda (f) (f x y))) (define (car z) (z (lambda (x y) x))) (define (cdr z) (z (lambda (x y) y)))

  40. How can we implement pairs?(Second solution: “eager” implementation) (define (cons x y) (lambda (m) (cond ((= m 0) x) ((= m 1) y) (else (error "Argument not 0 or 1 -- CONS" m)))))) (define (car z) (z 0)) (define (cdr z) (z 1))

  41. ((lambda(m) (cond ..)) 0) (cond ((= 0 0) 3) ((= 0 1) 4) (else ...))) > 3 Implementing pairs (second solution, cont’) Name Value > (define p (cons 3 4)) p (lambda(m) (cond ((= m 0) 3) ((= m 1) 4) (else ..))) > (car p) (define (cons x y) (lambda (m) (cond ((= m 0) x) ((= m 1) y) (else ...))) (define (car z) (z 0)) (define (cdr z) (z 1))

More Related