220 likes | 232 Views
A 3D numerical model for estuarine, coastal, and shelf sea hydrodynamics with applications to the Western Baltic Sea. Solves primitive equations with hydrostatic and Boussinesq approximations, includes tracer equations for salinity, temperature, suspended matter, and ecosystem. Supports wetting and drying of intertidal flats. Consistent treatment of bottom boundary condition for momentum. Can be used for evaluating anthropogenic mixing effects due to offshore structures.
E N D
Applications of the General Estuarine Transport Model (GETM) to the Western Baltic Sea Hans Burchard1,3, Frank Janssen2, Lars Umlauf1, Karsten Bolding3, and Hannes Rennau1 1. Baltic Sea Research Institute Warnemünde 2. Bundesamt für Seeschifffahrt und Hydrographie 3. Bolding & Burchard Hydrodynamics hans.burchard@io-warnemuende.de
GETM is a 3D numerical model for estuarine, • coastal and shelf sea hydrodynamics with • applications to the • Tidal Elbe • Wadden Sea • Limfjord • Lake of Geneva, • Western Baltic Sea, • North Sea – Baltic Sea system • …
Present GETM characteristics ... physics ... Solves three-dimensional primitive equations with hydrostatic and Boussinesq approximations. Based on general vertical coordinates. Options for Cartesian, spherical and curvilinear coordinates. Fully baroclinic with tracer equations for salinity, temperature, suspended matter and ecosystem (from GOTM bio module). Two-equation turbulence closure models with algebraic second-moment closures (from GOTM turbulence module). Wetting and drying of intertidal flats is supported also in baroclinic mode.
Present GETM characteristics ... numerics ... Consistent explicit mode splitting into barotropic and baroclinic mode. High-order positive-definite TVD advection schemes with directional split. Choice of different schemes for internal pressure gradient calculation. Consistent treatment of zero-velocity bottom boundary condition for momentum. Positive-definite conservative schemes for ecosystem processes (in GOTM-Bio module).
Kriegers Flak Motivation: wind farms in the Western Baltic Sea
Western Baltic Sea monitoring stations Farvandsvæsenet Drogden Sill: 8 m + MARNET (IOW/BSH) + + Arkona Buoy: 48 m Darss Sill: 19 m
Inflows over Drogden Sill baroclinic barotropic surface bottom Source: Farvandsvæsenet
Sound lock-exchange experiment with GETM 5 days 15 days 31 days Bottom salinity: 8 – 25 psu Main plume goes via north of Kriegers Flak: Is this real ?
Plume passing Kriegers Flak (Feb 2004)
Section across Kriegers Flak
Ship A:TL-ADCP Ship B: Microstructure Flow View 1 km Nov 2005: Velocity structure of dense bottom current Can we explain the flow structure ? East comp. North comp.
Western Baltic Sea conclusions: Density currents in Western Baltic Sea are highly variable, show a complex transverse structure and induce substantial natural transports and mixing. For evaluating additional anthropogenic mixing due to offshore structures on these currents, proper parameterisations need to be found and inserted into 3D model (QuantAS-Off). Multiple bridges and wind farms may result in cumulative mixing effects.