180 likes | 380 Views
7.2 Exponential Decay. Exponential Decay. Has the same form as growth functions f(x) = ab x Where a > 0 BUT: 0 < b < 1 (a fraction between 0 & 1). Recognizing growth and decay functions. State whether f(x) is an exponential growth or decay function f(x) = 5(2/3) x
E N D
Exponential Decay • Has the same form as growth functions f(x) = abx • Where a > 0 • BUT: • 0 < b < 1 (a fraction between 0 & 1)
Recognizing growth and decay functions • State whether f(x) is an exponential growth or decay function • f(x) = 5(2/3)x • b=2/3, 0<b<1 it is a decay function. • f(x) = 8(3/2)x • b= 3/2, b>1 it is a growth function. • f(x) = 10(3)-x • rewrite as f(x)=10(1/3)x so it is decay
Recall from 7.1: • The graph of y= abx • Passes thru the point (0,a) (the y intercept is a) • The x-axis is the asymptote of the graph • a tells you up or down • D is all reals (the Domain) • R is y>0 if a>0 and y<0 if a<0 • (the Range)
Example 1 Graph: • y = 3(1/4)x • Plot (0,3) and (1,3/4) • Draw & label asymptote • Connect the dots using the asymptote y=0 Domain = all reals Range = reals>0
Graph • y = -5(2/3)x • Plot (0,-5) and (1,-10/3) • Draw & label asymptote • Connect the dots using the asymptote y=0 Domain : all reals Range : y < 0
To graph a general Exponential Function: • y = a bx-h + k • Sketch y = a bx • h= ??? k= ??? • Move your 2 points h units left or right …and k units up or down • Then sketch the graph with the 2 new points.
c) graph y=-3(1/2)x+2+1 • Lightly sketch y=-3·(1/2)x • Passes thru (0,-3) & (1,-3/2) • h=-2, k=1 • Move your 2 points to the left 2 and up 1 • AND your asymptote k units (1 unit up in this case)
y=1 Domain : all reals Range : y<1
EXPONENTIAL DECAY MODEL C is the initial amount. t is the time period. y = C (1 – r)t (1 – r) is the decay factor,r is the decay rate. The percent of decrease is 100r.
Using Exponential Decay Models • When a real life quantity decreases by fixed percent each year (or other time period), the amount y of the quantity after t years can be modeled by: • y = a(1-r)t • Where a is the initial amount and r is the percent decrease expressed as a decimal. • The quantity 1-r is called the decay factor
Ex2: a) Buying a car! • You buy a new car for $24,000. • The value y of this car decreases by 16% each year. • Write an exponential decay model for the value of the car. • Use the model to estimate the value after 2 years. • Graph the model. • Use the graph to estimate when the car will have a value of $12,000.
Let t be the number of years since you bought the car. • The model is: y = a(1-r)t • = 24,000(1-.16)t • = 24,000(.84)t • Note: .84 is the decay factor • When t = 2 the value is y=24,000(.84)2≈ $16,934
Now Graph The car will have a value of $12,000 in 4 years!!!
2 b) Writing an Exponential Decay Model COMPOUND INTERESTFrom 1982 through 1997, the purchasing powerof a dollar decreased by about3.5% per year. Using 1982 as the base for comparison, what was the purchasing power of a dollar in 1997? Let y represent the purchasing power and lett = 0 represent the year 1982. The initial amount is $1. Use an exponential decay model. SOLUTION y = C(1 – r)t Exponential decay model = (1)(1 – 0.035)t Substitute1forC,0.035forr. = 0.965t Simplify. Because 1997 is 15 years after 1982, substitute 15 for t. y = 0.96515 Substitute 15fort. 0.59 The purchasing power of a dollar in 1997 compared to 1982 was $0.59.
Graphing the Decay of Purchasing Power t 0 1 2 3 4 5 6 7 8 9 10 y 1.00 0.965 0.931 0.899 0.867 0.837 0.808 0.779 0.752 0.726 0.7 1.0 0.8 0.6 Purchasing Power (dollars) 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 Years From Now GRAPHING EXPONENTIAL DECAY MODELS Graph the exponential decay model in the previous example. Use the graph to estimate the value of a dollar in ten years. Make a table of values, plot the points in a coordinate plane, and draw a smooth curve through the points. SOLUTION y = 0.965t Your dollar of today will be worth about 70 cents in ten years.
CONCEPT EXPONENTIAL GROWTH AND DECAY MODELS SUMMARY (1 + r) is the growth factor,r is the growth rate. (1 – r) is the decay factor,r is the decay rate. (0,C) (0,C) GRAPHING EXPONENTIAL DECAY MODELS EXPONENTIAL GROWTH MODEL EXPONENTIAL DECAY MODEL y = C (1 + r)t y = C (1 – r)t An exponential model y = a•btrepresents exponential growth ifb > 1 and exponential decay if 0 < b < 1. C is the initial amount. t is the time period. 0 < 1 – r < 1 1 + r > 1
Assignment Page 489 (1-10, 22-27, 30, 31)