1 / 22

Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging. Roberto Pani On behalf of SCINTIRAD Collaboration INFN and Sapienza-University of Rome Italy. LaBr 3 :Ce/PMT Pulse height non linearity. Co 60 gamma ray pulse height spectra measured with LaBr 3 :Ce

belva
Download Presentation

Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging Roberto Pani On behalf of SCINTIRAD Collaboration INFN and Sapienza-University of Rome Italy

  2. LaBr3:Ce/PMT Pulse height non linearity Co60 gamma ray pulse height spectra measured with LaBr3:Ce at cathode voltages a) HV = -500 V and b) HV = -700 V. Gamma Ray Spectroscopy With a Ø 19 x19 mm3 LaBr3 : 0:5% Ce3+ Scintillator P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, Member, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 3, JUNE 2004

  3. Scintillation crystals • Planar LaBr3:Ce 49494 mm3 + 3 mm glass window • Planar NaI(Tl) 49494 mm3 + 3 mm glass window • LaBr3:Ce cylinder ½” Ø  ½” thickness (gold standard)

  4. R6231 Hamamatsu:optimized PMT for LaBr3:Ce crystal • QE typ. = 30 % @ 420 nm • Number of dinode = 8 • Gain= 2.7 E+05 @ HV= -1000 V • Voltage Divider modified by Saint Gobain

  5. Pulse height linearity vs photon energy Hamamatsu R6231 HV=-1000V

  6. Planar LaBr3:Ce 49x 49 x 4 mm3 + 3 mm window Planar NaI(Tl) 49x 49 x 4 mm3 + 3 mm window Cylinder LaBr3:Ce ½” Ø x ½ “ thickness Energy resolution FWHM R6231 Hamamatsu PMT @ HV=-1000 V

  7. Overall EnergyResolution: Theory • Rs= intrinsic resolution of scintillator crystal • N = mean value of photon • = 0.3 , =0.98,  ~4.8 (PMT R6231 Hamamatsu @ HV=-1000 V) • Photon Energy 122 keV a:Comparative study of scintillators for PET/CT detectorsNassalski, A.; Kapusta, M.; Batsch, T.; Wolski, D.; Mockel, D.; Enghardt, W.; Moszynski, M.;Nuclear Science Symposium Conference Record, 2005 IEEE, Volume 5,  23-29 Oct. 2005 Page(s):2823 – 2829

  8. LaBr3:Ce - Energy Resolution Summary a:Comparative study of scintillators for PET/CT detectorsNassalski, A.; Kapusta, M.; Batsch, T.; Wolski, D.; Mockel, D.; Enghardt, W.; Moszynski, M.;Nuclear Science Symposium Conference Record, 2005 IEEE, Volume 5,  23-29 Oct. 2005 Page(s):2823 – 2829 bX-ray and gamma-ray response of a 2”x2” LaBr3:Ce scintillation detector F. Quarati, A.J.J. Bos, S. Brandenburg, C. Dathy, P. Dorenbos, S. Kraft,R.W. Ostendorf, V. Ouspenski, Alan Owens, Nuclear Instruments and Methods in Physics Research A 574 (2007) 115–120

  9. 15 mm 50 mm H8500 Hamamatsu FP : • Metal channel dynode • QE typ. = 24 % @ 420 nm • Number of dinode = 12 • Gain= 1.5 E+06 typ. • Number of anodes = 8 x 8 array (6.08 mm pitch) Energy resolution analysis The output signal was obtained from the short circuit of all anodic signals

  10. Pulse height linearity vs photon energy LaBr3:Ce continuous crystal + Hamamatsu H8500 FP (sc anode) HV=-1000V

  11. Planar LaBr3:Ce 49 x 49 x 4 mm3 + 3 mm glass window Energy resolutionH8500 Hamamatsu F.P. (sc anode) @ HV= -1000V

  12. R7600-200 Hamamatsu PMT • QE max. = 41.6 % @ 380 nm • Number of dinode = 10 • Gain= 2.0 E+06 @ HV=-800 V LaBr3:Ce Cylinder (½”Ø  ½” thickness)

  13. 32 keV NaI(Tl) planar + R6231 81 keV 356/380 keV 274/302 keV 356 keV 302 keV 274 keV 380 keV R7600-200 HamamatsuLaBr3:Ce Cylinder (½” Ø x ½ “ thickness)Ba133 source HV=-700V

  14. Spatial Resolution PSF image PSF Image Scintillation event Light PSF Co57 pulse height analisys Position linearity

  15. New algorithm: Standard algorithm: t = threshold (0÷1) LaBr3:Ce Charge spread HV=-825V After procedure Centroid Algorithmfor small FoV gamma camera

  16. Performances Analysis: LaBr3(Ce) 49  49  4 mm3 + 3 mm glass window • Coupled to the MA-PMT H8500 tube • 0.4 mm Øcollimated Tc99m source (140 keV photon energy) 1.5 mm step scanning • Image analysis with and without new algorithm

  17. HV = - 750V SR = 1.90 mm SR=1.36 mm SR = 1.67 mm SR=1.28 mm HV = - 800V LaBr3(Ce): Overall Spatial Resolution@140 keV New algorithm Standard algorithm

  18. Experimental data vs Monte Carlo simulation GEANT4: Pulse Height Centroid @ 140 keV

  19. Experimental data vs Monte Carlo simulation: Charge distribution spread @ 140 keV LaBr3:Ce 49x49x4 mm3 continuous crystal + H8500 MA-PMT Monte Carlo Simulation

  20. Experimental data vs Monte Carlo simulation: Spatial resolution & position linearity without new centroid algorithm LaBr3:Ce 49x49x4 mm3 + 3mm glass window continuous crystal + 8x8 anode array • Experimental measurement: • 0.4 mm Ø point source Tc99m • 1.5 mm step • Monte Carlo simulation: • 140 keV photon energy • 6 mm step

  21. Experimental data vs Monte Carlo simulation: Spatial resolution & position linearity with new centroid algorithm LaBr3:Ce 49x49x4 mm3 + 3mm glass window continuous crystal + 8x8 anode array • Experimental measurement: • 0.4 mm Ø point source Tc99m • 1.5 mm step • Monte Carlo simulation: • 140 keV photon energy • 6 mm step

  22. Conclusions • LaBr3:Ce seems a very attractive scintillation crystal for SPET application (140 keV) • At 140 keV photon energy, continuous crystal can allow the highest values of spatial resolution, energy resolution and detection efficiency • Hamamatsu MAPMT photodetector are limiting energy resolution and spatial resolution response • Probably the new ultra high Q.E. MAPMT could solve such limitations

More Related