140 likes | 516 Views
1-4 Warmup. Simplify each absolute value expression. 1) – 6 2) 3.5 3) 7 – 10 4) – 4 – 2 5) – 2 – ( – 4) 6) – 3 + 12 Solve each equation. 7. x + 2 x – 6 = 6 8. 3 x + 9 + 5 x = 81 9. w – 2 = – 4 + 7 w. Lesson 1-4: Measuring Segments & Angles.
E N D
1-4 Warmup Simplify each absolute value expression. 1) –62) 3.53) 7 – 10 4) –4 – 25) –2 – (–4)6) –3 + 12 Solve each equation. 7. x + 2x – 6 = 6 8. 3x + 9 + 5x = 81 9. w – 2 = –4 + 7w
Lesson 1-4: Measuring Segments & Angles The location of a point. Objects that are the same shape and size A point that divides a segment into two equal segments Formed by two rays or segments that share an endpoint An angle whose measure is smaller than a “corner” An angle whose measure is a “corner” - 900 An angle whose measure is greater than a “corner” An angle whose measure is a straight line - 1800
Measures with segments: Distance between two points is the absolute value of the difference between their coordinates. A B -1 0 1 Distance from A to B is or Both equal 9!
Example 3-1a Use the number line to find QR. The coordinates of Q and R are –6 and –3. Distance Formula Simplify. Answer: 3
(cont’d) • Symbol: AB means the segment: AB (without symbol) means the length • Congruent segments • When 2 segments are the same length, we write… or A C B D
Small segment Small segment Whole segment • Segment Addition: “parts of a segment add to the whole” ___________ + ___________ = ____________ • Midpoint • Forms 2 congruent segments on a segment (Cuts it in half!) • Equations: ________ = _________ ________ = ½ ● ________ These red marks indicate segments AM and BM are the same. A M B Small segment Other small segment Small segment Whole segment
Multiple-Choice Test ItemWhat is the measure of ifBis the midpoint of ? A 1 B 3 C 5 D 10 Example 3-5e Answer: D
Angles A vertex 1 sides B C Parts: Sides: rays BA and BC Vertex: point B Naming: 3 letters (all angles): 1 letter: 1 number: Tracing these letters makes the angle. or Only when there is exactly 1 angle at the vertex!
a. Name all angles that have X as a vertex. b. Name the sides of 3. Answer: c. Write another name for 3. Example 4-1d Answer:1, 2, 3, and RXB or RXN Answer:AXB, AXN, NXA, BXA
Types of angles • Acute – “small” • Measures 00 - 890 • Right – “right turn” • Measures 900 • Obtuse – “obese” • Measures 910 - 1790 • Straight • Measures 1800 This red box indicates a right angle of 90 degrees.
Example ; . Find We can write an equation by thinking: small + small = whole A 1 2 B C