230 likes | 763 Views
9. Systematic Treatment of Equilibrium. Purpose : To solve complex equilibriums. Systematic procedure : balanced chemical equation charge balance equation mass balance equation. 간단한 예 : 10 -8 M HCl 의 pH 계산. HCl ---> H + + Cl - H 2 O ---> H + + OH -.
E N D
9. Systematic Treatment of Equilibrium Purpose : To solve complex equilibriums • Systematic procedure : • balanced chemical equation • charge balance equation • mass balance equation 간단한 예 : 10-8 M HCl의 pH계산 HCl ---> H+ + Cl- H2O ---> H+ + OH-
9-1. Charge Balance : • principle of electroneutrality in a reaction • 양전하 합 = 음전하 합 • the coefficient in front of each species always equals the magnitude of the charge on the ion eg • If : [PO43-] = 0.01, then the negative charge in • 3[PO43-] = 3(0.01) = 0.03 M
Charge Balance Example : Suppose a solution contains ionic species at the following concentrations: [H+] = 5.1 x 10-12 M [H2PO4-] = 1.3 x 10-6 M [K+] = 0.0550 M [HPO42-] = 0.0220 M [OH-] =0.0020 M [PO43-] = 0.0030 M The charge balance is: [H+] +[K+] = [OH-] + [H2PO4-] + 2[HPO42-] + 3[PO43-] Are the charges balanced ?
Considering the positive charges : (5.1 x 10-12) + 0.0550 = 0.0550 Considering the negative charges : 0.0020 + (1.3 x 10-6) + 2(0.0220) + 3(0.0030) = 0.0550 Balanced !
In general, the charge balance for a solution is : n1[C1] + n2[C2] + n3[C3] +… = m1[A1] + m2[A2] + m3[A1] +… where [C] = concentration of a cation n = charge of the cation [A] = concentration of a anion m = charge of the anion
9-2. Mass Balance • Mass balance : • principle is based on the law of mass conservation • states that the quantity of all species in a solution containing a particular atom or group of atoms must equal the amount of that atoms or group of atoms that is delivered to the solution
Example : Write the equation of mass balance for a 0.100 M solution of acetic acid. The equilibria are: HOAc H+ + OAc- H2O H+ + HO- Equilibrium concentration of acetic acid, CHOAc = sum of the equilibrium concentrations of all its species = [HOAc] + [OAc-] = 0.100 M Equilibrium concentration of H+, CH = [OAc-] + [HO-] +
[Ag(NH3)2]Cl Ag(NH3)2+ + Cl- Ag(NH3)2+ Ag(NH3)+ + NH3 Ag(NH3)+ Ag+ + NH3 NH3 + H2O NH4+ + HO- H2O H+ + HO- - Example : Write the equations of mass balance for a 1.00 x 10-5 M [Ag(NH3)2]Cl solution The equilibria are
[Ag(NH3)2]Cl Ag(NH3)2+ + Cl- Ag(NH3)2+ Ag(NH3)+ + NH3 Ag(NH3)+ Ag+ + NH3 NH3 + H2O NH4+ + HO- H2O H+ + HO- - CCl-= 1.00 x 10-5 M CAg+ = [Ag+] + [Ag(NH3)+] + [Ag(NH3)2+] = 1.00 x 10-5 M CNH3 = [NH4+] + [NH3] + [Ag(NH3)+] + 2 [Ag(NH3)2+] = 2.00 x 10-5 M [HO-]= [NH4+] + [H+]
What is the charge balance equation for : [Ag(NH3)2]Cl Ag(NH3)2+ + Cl- Ag(NH3)2+ Ag(NH3)+ + NH3 Ag(NH3)+ Ag+ + NH3 NH3 + H2O NH4+ + HO- H2O H+ + HO- [Ag+] + [Ag(NH3)+] + [Ag(NH3)2+] + [NH4+] + [H+] = [HO-] + [Cl-]
9-3. Systematic Approach to Equilibrium Calculations Step 1: 적절한 관련 반응식 쓰기 Step 2: charge balance equation 쓰기 Step 3: mass balance equation 쓰기 Step 4: step1의 반응평형식 쓰기 Step 5: 반응식 수와 미지수 수 비교 Step 6: 미지수 풀기(계산하기) 반응식 쓰기 : 화학지식 필요 강의에서 주어짐
Example : 간단한 예 : 10-8 M HCl의 pH계산 Step 1: HCl ---> H+ + Cl- H2O ---> H+ + OH- Step 2: [H+] = [Cl-] + [OH-] Step 3: [H+] = [Cl-] + [OH-] : same [Cl-] = 10-8 M Step 4: [H+][OH-] = Kw = 1.0 x 10-14 Step 5: 반응식 수 = 3 미지수 수 = 3 Step 6: [H+] = 10-8 + [OH-] [OH-] = 1.0 x 10-14 /[H+] 답: [H+] = 1.05 x 10-7 (, -0.95 x 10-7) Disregard negative number
위 농도는 적정한가? 공통이온효과 무시경우 = 10-7 + 10-8 = 1.1 x 10-7 10-7과 1.1 x 10-7 사이임 다른 이온농도 계산 [OH-] = 0.95 x 10-7 ***최종확인 1. 전하균형: [H+] = [Cl-] + [OH-] 양이온 : 1.05 x 10-7 음이온 : 0.1 x 10-7 + 0.95 x 10-7 =1.05 x 10-7
9-4. Dependence of Solubility on pH Step 1: write the balanced chemical equations CaF2(s) Ca2+ + 2F- F- + H2O HF + OH- H2O H+ + OH- Step 2: To find [Ca2+], [F-], [OH-], [H+] and [HF] Find the solubility of CaF2 in water at pH3, given: Ksp = [Ca2+][F-]2 = 3.9 x 10-11, = 1.5 x 10-11 [HF][OH-] [F-]
Step 2: write the charge balance equation [H+] + 2[Ca2+] = [F-] + [HO-] (1) Step 3: write the mass balance equation [F-] + [HF] = 2[Ca2+] (2) Step 4: Equilibrium constant eqns. Ksp = [Ca2+][F-]2 = 3.9 x 10-11 (3) Kb = = 1.5 x 10-11 (4) Kw = [H+] [HO-] = 1.0 x 10-14 (5) [HF][OH-] [F-] Step 5: count the equations and unknown species five equations and five species
[HF] Kb 1.5 x 10-11 [F-] [HO-] 1.0 x 10-11 Step 6 :5차 연립방정식 풀기 (not simple) approximations to simplify the mathematics ** Let the pH of the solution be 3.00 [H+] = 1.0 x 10-3 M From (5) [HO-] = 1.0 x 10-14/ 1.0 x 10-3 = 1.0 x 10-11 From (4) = = = 1.5 [HF] = 1.5[F-] (6) From (2) [F-] + [HF] = 2[Ca2+] [F-] + 1.5[F-] = 2[Ca2+] [F-] = 0.80[Ca2+] (7)
From (3) Ksp = [Ca2+][F-]2 = 3.9 x 10-11 [Ca2+](0.80 [Ca2+])2 = 3.9 x 10-11 [Ca2+] = 3.9 x 10-4 M From (7)[F-] = 0.80[Ca2+] = 3.1 x 10-4 M From (6) [HF] = 1.5[F-] = 4.7 x 10-4 M In this case eqn 1 (charge balance) is not valid; should not be used.
What about at other pH ? pH dependence of [F-], [HF], [Ca2+] in CaF2 saturated soln. ---> See Fig 9-2 At high pH, there is very little HF, so [F-] 2[Ca2+] At low pH, there is very little F-, so [HF] 2[Ca2+] Any way to solve for un-buffered solution?
Acid Rain dissolves minerals Salts of Basic Anion : F-, OH-, S2-, CO32- PO43- ===> Acid Soluble Acid Rain : SOx, NOx ==> Sulfuric, Nitric Acid in the air 결과 : 대리석 녹임 : Fig 9-3 토양 녹임 : Fig 9-4
pH and Tooth Decay 치아각질(enamel): Hydroxyapatite: ---> Acid Soluble (No Soda!!) Ca10(PO4)6(OH)2 + 14H+ = 10Ca2+ + 6H2PO4- + 2H2O What Acid? Lactic!!! OH CH3CHCO2H
Solubility of HgS Step 1: HgS = Hg2+ + S2- S2- + H2O = HS- + OH- HS- + H2O = H2S + OH- H2O = H+ + OH- If other reactions? Step 2: [Hg2+] + [H+] = 2[S2- ] + [HS-] + [OH-] Step 3: [Hg2+] = [S2- ] + [HS-] + [H2S] Step 4: Ksp = Kb1 = Kb2 = Kw = Step 5: 6 eqn, 6 unknown
At <pH = 6, [Hg2+] = [H2S] At >pH=8, [Hg2+] = [HS-]