1 / 5

NASA space mission highly relies on spacecrafts made of lightweight composites

Hybrid High-Strength Carbon-Fiber/Epoxy Composites Reinforced with Self-Healing Nanofibers at Interfaces (ND NASA EPSCoR Seed Grant $28,610 , 4/16/2011-4/15/2012) Xiangfa Wu, PhD. NDSU Mechanical Engineering . NASA space mission highly relies on spacecrafts made of lightweight composites

benoit
Download Presentation

NASA space mission highly relies on spacecrafts made of lightweight composites

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hybrid High-Strength Carbon-Fiber/Epoxy Composites Reinforced with Self-Healing Nanofibers at Interfaces(ND NASA EPSCoR Seed Grant $28,610, 4/16/2011-4/15/2012)Xiangfa Wu, PhD. NDSU Mechanical Engineering • NASA space mission highly relies on spacecrafts made of lightweight composites • (i.e., carbon fiber reinforced polymer composites) with high specific strength • and stiffness and superior damage tolerance • Goal of proposed research • - Development of a novel interfacial self-healing strategy for aerospace • polymer composites with low-cost, low-weight penalty, and easy incorporation into • existing manufacturing process of high-strength polymer composites • - Formulation of reliable route for healing-agent encapsulation at nanoscale(two orders • below existing ones) and processing of concept-of-proof hybrid multiscale • polymer composites with self-healing interfaces • - Exploration of potential interfacial self-healing • mechanism for controlled manufacturing Interfacial failure

  2. Relevance to NASA • Research is directly related to NASA interests in developing high-strength lightweight polymer composites with high damage tolerance and damage self-repairing function in low cost. • Proposed novel hybrid multiscale composites are expected to remarkably enhance the damage tolerance and fatigue lifetime, substantially reduce the structural maintenance cost, and increase the integrity and reliability of the resulting composite structures. As an example, if an antenna of the space station was made of such high-strength advanced composites with damage self-repairing function, it could be possible to save huge maintenance fees relating shuttle launches and space walk.

  3. Accomplishments • Successful fabrication of continuous core-shell nanofibers loaded with liquid healing agent by coelectrospinning • Successful fabrication of proof-of-concept carbon-fiber/epoxy composites reinforced with self-healing core-shell nanofibers at interfaces • Reliable mechanical characterization of self-healing effect in stiffness recovery (up to 100% recovery) after damage • Exploration of interfacial toughening & self-healing mechanisms via SEM fractography (Dzenis, 2008) (Wu et al., 2012)

  4. Collaborations, Student Involvement & Publications • Collaborations - Dr. Bin Chen, NASA Ames Research Center, CA - Dr. Alexander L. Yarin, Univ. of Illinois-Chicago, IL - Dr. Hao Fong, South Dakota Sch. of Mines & Tech., SD • Research Assistants Involved - Zhengping Zhou (Ph.D. student, ongoing); - Arifur Rahman (M.S., 2/12); - Robert Jensen (M.S., 8/11); - Youhao Zhao (undergraduate, summer 2011) • Publications 1. X.F. Wu, A. Rahman, & Z.P. Zhou, “Hybrid high-strength carbon-fiber/epxoy composites reinforced with ultrathin toughening and self-healing core-shell fibers at interfaces,” NDSU Technology Transfer Office, February 2, 2012 (Invention Disclosure). 2. Z.P. Zhou, X.F. Wu, X.Q. Gao, L. Jiang, Y. Zhao, & H. Fong, “Parameter-dependency of conic angle of nanofibers during electrospinning,” J. Phys. D: Appl. Physi.44, 435401 (2011) (6 pages). 3. S. Sinha-Ray, D. Pelot, Z.P. Zhou, A. Rahman, X.F. Wu, & A.L. Yarin, “Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation,” J. Mater. Chem.22, 9138-9146 (2012). 4. Q. Chen, L.F. Zhang, M.K.Yoon, X.F. Wu, R.H. Arefin, & H. Fong, “Epoxy composites reinforced and/or toughened with electrospun SiO2 nanofibers,” J. Appl. Polym. Sci.124, 444-451 (2012). 5. X.F. Wu, A. Rahman, Z..P. Zhou, D. Pelot, S. Sinha-Ray, B. Chen, & A. L. Yarin, “Polymer composites with engineered self-healing interfaces by electrospun core-shell nanofibers,” (under review)

  5. Future Plans for Proposals • AFOSR: Novel high-strength multiscale polymer composites with engineered self-healing interfaces ($613,317) (submitted, PI; co-PI: A.L. Yarin, UIC) • NSF CMMI: Continuous nano-scaled carbon fibers with superior mechanical properties and their innovative composites with exceptionally high performances (co-PI) ($334,198) (submitted, co-PI; PI: H. Fong, SDSMT) • DARPA (under preparation)

More Related