1 / 16

IKG2B3 2033 Metoda Komputasi

IKG2B3 2033 Metoda Komputasi. Silabus. Pemodelan Matematika Fungsi multivariable Metode Gradient Descent/Ascent Pengenalan Maple/ Matlab Implementasi metode gradient descent/ascent dalam Maple/ Matlab Masalah-masalah optimasi dalam bentuk lain. Silabus.

bern
Download Presentation

IKG2B3 2033 Metoda Komputasi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IKG2B3 2033 MetodaKomputasi

  2. Silabus • PemodelanMatematika • Fungsimultivariable • MetodeGradient Descent/Ascent • PengenalanMaple/Matlab • Implementasimetode gradient descent/ascent dalam Maple/Matlab • Masalah-masalahoptimasidalambentuklain

  3. Silabus 7. MasalahOptimasidengankendala 8. Metode Conjugate Gradient 9. Implementasimetode conjugate gradient

  4. Evaluasi : UTS : 30 % UAS : 30 % Tugas/Quis : 40 %

  5. Penilaian ( N = Skala 100 ) A : N  80 B : 65  N < 80 C : 50  N < 65 D : 35  N < 50 E : N < 35

  6. Referensi • 1) PRACTICAL MATHEMATICAL OPTIMIZATION An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, Jan A. Snyman, Springer, 2005. • 2) Numerical Optimization, Jorge Nocedal and Stephen J. Wright, Second Edition, Springer, 2000..

  7. Pemodelan Pemodelanmatematika: suatuupayauntukmenyatakansuatumasalahnyatamelaluibahasamatematika.

  8. Bentuk Model Matematika Model matematikadapatberupa: • Sistempersamaan : persamaan linear, kuadrat, persamaandifferensialbiasa, persamaandifferensialparsialdll • Prosesstokastik/probabilistik : model antrian, rantai Markov, dll • Algoritma : model evolusi, jaringansyaraf, dll

  9. TahapanPenyelesaianMasalah MasalahNyata Ya/Stop Memuaskan? Tidak Asumsi-Asumsi Validasi Model Matematika InterpretasiSolusi MasalahKomputasi Solusi

  10. Problem Location Base Service ( LBS) • What is location-based service? LBS is an information and entertainment service, accessible with mobile devices through the mobile network and utilizing the ability to make use of the geographical position of the mobile device

  11. Bagaimanamenentukanlokasi Mobile User denganmenggunakan 3 BTS (base station) terdekat.

  12. (c,d) (x,y) (a,b) (e,f)

  13. (x,y) = ? (a,b) koordinat (posisi) BTS 1 (c,d) koordinat (posisi) BTS 2 (e,f) koordinat (posisi) BTS 3

  14. Terhadap BTS pertama : Terhadap BTS kedua : Terhadap BTS ketiga :

  15. Syaratdiatasdapatdituliskandalambentuk Menentukanposisi mobile phone = meminimumkanfungsi Terhadap x dan y Atau Min F(x,y) x,y

More Related