1 / 18

Non-Equilibrium Ionization

Non-Equilibrium Ionization. in Metal Ion Absorbers and. in Post-Shock Cooling Layers. Gnat & Sternberg 2007, ApJS, 168, 213. Gnat & Sternberg 2008, ApJ submitted. Orly Gnat (Caltech) with Amiel Sternberg (Tel-Aviv University). Non–Equilibrium Radiative Cooling.

bernad
Download Presentation

Non-Equilibrium Ionization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-Equilibrium Ionization in Metal Ion Absorbers and in Post-Shock Cooling Layers Gnat & Sternberg 2007, ApJS, 168, 213 Gnat & Sternberg 2008, ApJ submitted Orly Gnat (Caltech) with Amiel Sternberg (Tel-Aviv University)

  2. Non–Equilibrium Radiative Cooling • Cooling is faster than recombination(tc<<tr) • Gas stays “over-ionized” • Modified ionization affects cooling rates:for over-ionized gas cooling is suppressed • Cooling rate depends on metallicityMore metals ⇒ faster cooling ⇒ further out of equilibrium ApJS 168, 213

  3. H He C N O Ne Mg Si S Fe Numerical Computation • Cooling from CIE at T>5x106K. • Follow time-dependent ionizationdxi/dt=… ~ • The energy equation (Cooling) dT/dt=… • Step 1: No Photoionization • dxi/dT independent of density • …But depends on metallicity ApJS 168, 213

  4. time Results: Ionization - Hydrogen Equilibrium Non-Equilibrium 100 10-1 10-2 104 105 106 104 105 106 Temperature (K) Temperature (K) Recombination Lag ApJS 168, 213

  5. Results: Ionization - Carbon Equilibrium Non-Equilibrium 100 10-1 10-2 104 105 106 104 105 106 Temperature (K) Temperature (K) ApJS 168, 213

  6. Results: CIE Cooling Metal Line Cooling Z = 2 Z = 1 Z = 10-1 Z = 10-2 Z = 10-3 10-21 10-22 H Lya Leq (erg cm3 s-1) cooling efficiency He Cooling 10-23 Bremsstrahlung 10-24 104 105 106 107 108 Temperature (K)

  7. Equilibrium Non-Equilibrium Results: Non-Equilibrium Cooling

  8. Fox et al. 2005 ApJ 630, 332 Turbulent Mixing Layers log ( CIV / OVI ) Shock Ionization Conductive Interfaces Cooling Flows log ( NV / OVI ) Local Metal-Ion Absorbers ApJS 168, 213

  9. High Velocity Metal Absorbers Fox et al. 2005 ApJ, 630, 332

  10. Time-Dependent Cooling - Summary • Equilibrium and Non-EquilibriumIonization States & Cooling Efficiencies ofH, He, C, N, O, Ne, Mg, Si, S, & Fe,For 104 < T < 108 Kand 10-3 < Z < 2 solar. • Isochoric / Isobaric – conditions & results. • Impact of Self Radiation. http://wise-obs.tau.ac.il/~orlyg/cooling/ ApJS 168, 213

  11. Step 2: Steady Flows of Cooling Gas • Integrated metal-ioncooling columnsin steady flows of cooling gas

  12. Post Shock Cooling Layers • Radiative transfer⇒ Photoionization, heating • Ionization: Auger • Precursor • Dynamics shock Pre-shock Post-shock gas T(x) <— upstream downstream —>

  13. Post-Shock Cooling Layers • Two extremes: • No B field - explicitly follow Rankine-Hugoniot continuity eqns: Mass Momentum Energy Nearly isobaric flow: P∞ = 4/3 P0 • Strong B field - isochoric evolution.

  14. High-T Radiative Zone Non-eq Cooling Zone The Photo- absorption Zone Post-Shock Cooling: Shock Structure Ts=5x106K Z=0.1 nH=0.1cm-3 (Photoionized) Radiative Precursor

  15. Post-Shock Cooling: Shock Structure Magnetic field Gas Metallicity Shock temperature

  16. Post-Shock Cooling: Emitted Radiation

  17. Post-Shock Cooling: Column Densities

  18. Gnat & Sternberg 2008 • Shock Structure, Profiles, Scaling Relations • Ion Fractions • Cooling and Heating • Integrated Column Densities • Columns in Precursors Thank you !

More Related