230 likes | 657 Views
Novae and Mixing John ZuHone ASCI/Alliances Center for Thermonuclear Flashes University of Chicago Overview Purpose What is FLASH? Mixing in Novae Setting Up the Problem Doing the Problem Conclusions Purpose
E N D
Novae and Mixing John ZuHone ASCI/Alliances Center for Thermonuclear Flashes University of Chicago
Overview • Purpose • What is FLASH? • Mixing in Novae • Setting Up the Problem • Doing the Problem • Conclusions
Purpose • To develop a numerical simulation using the FLASH code to simulate mixing of flulds at the surface of a white dwarf star • Understanding this mixing will contribute to our understanding of novae explosions in binary systems containing a white dwarf star
What is FLASH? • FLASH is a three dimensional hydrodynamics code that solves the Euler equations of hydrodynamics • FLASH uses an adaptive mesh of points that can adjust to areas of the grid that need more refinement for increased accuracy • FLASH also can account for other physics, such as nuclear reactions and gravity
What is FLASH? • Euler equations of hydrodynamics ¶r/¶t + Ñ • rv = 0 ¶rv/¶t + Ñ • rvv + ÑP = rg ¶rE/¶t + Ñ • (rE + P) v = rv • g where E = e + ½v2
What is FLASH? • Pressure obtained using equation of state • ideal gas P = (g- 1)re • other equations of state (i.e. for degenerate Fermi gases, radiation, etc.) • For reactive flows track each species ¶rXl/¶t + Ñ • rXlv = 0
Mixing in Novae • What is a nova? • novae occur in binary star systems consisting of a white dwarf star and a companion star • the white dwarf accretes material into an accretion disk around it from the companion • some of this material ends up in a H-He envelope on the surface of the white dwarf
Mixing in Novae • this material gets heated and compressed by the action of gravity • at the base of this layer, turbulent mixing mixes the stellar composition with the white dwarf composition (C, N, O, etc.) • temperatures and pressures are driven high enough for thermonuclear runaway to occur (via the CNO cycle) and the radiation causes the brightness increase and blows the layer off
Setting Up the Problem • Initial Conditions • what we want is a stable model of a white dwarf star and an accretion envelope in hydrostatic equilibrium • we get close enough to the surface where Cartesian coordinates (x, y, z) and a constant gravitational field are valid approximations
Setting Up the Problem • Hydrostatic Equilibrium • to ensure a stable solution we must set up the initial model to be in hydrostatic equilibrium, meaning v = 0 everywhere • momentum equation reduces to ÑP = rg • set this up using finite difference method, taking an average of densities
Setting Up the Problem • Procedure for initial model • set a density at the interface • set temperature, elemental abundances • call equation of state to get pressure • iterate hydrostatic equilibrium condition and equation of state to get pressure, density, etc. in rest of domain
Setting Up the Problem • Region I: 50% C, 50% O, T1 = 107 K • Region II: 75% H, 25% He, T2 = 108 K • Density at interface: ro = 3.4 × 103 g cm-3
Doing the Problem • Loading the model into FLASH • load the model in and see if the simulation is in hydrostatic equilibrium • it ISN’T! • high velocities at interface and boundary • begin to examine the model for possible flaws
Doing the Problem • Question: Is the model itself really in hydrostatic equilibrium? • test the condition, discover that the model is in hydrostatic equilibrium to about one part in 1012 • Question: Is the resolution high enough? • try increasing number of points read in, increase refinement, still no change
Doing the Problem • Question: Is the density jump across the interface hurting accuracy? • smooth out density jump by linearly changing temperature and abundances • velocities slightly lower, but still present • try this for a number of different sizes of smoothing regions, still no change
Doing the Problem • Check the equation of state • the Helmholtz equation of state we were using was complex • accounts for gas, degenerate electrons, and radiation • switch to gamma equation of state to see if anything improves • NO IMPROVEMENT!
MovieTime! (maybe)
Doing the Problem • Two important resolutions • there was an error in temperature calculation which was caused by a mismatch in precision of numerical constants • we found that if we used the same number of points in FLASH as we did the initial model some of the inconsistency was resolved
Doing the Problem • Which brings us to where we currently are… • we believe that by our linear interpolation for the density is too imprecise • we are currently implementing a quadratic interpolation for the density
Conclusions • What have we learned? • stability is important • the need for there to be a check within FLASH itself for hydrostatic equilibrium • the need to carefully examine all parts of a code to look for possible mistakes • consistency!
Conclusions • Thanks to: • Mike Zingale and Jonathan Dursi • Prof. Don Lamb • the ASCI FLASH Center • the University of Chicago