400 likes | 675 Views
Batching and Mixing. Che5700 陶瓷粉末處理. Batch feed always involves mixing, objective: - high uniformity, high reliability ( more judgment (experience) rather science ) Before mixing: action of feeding; next few graphs showing some common equipments, goal: good powder flowability .
E N D
Batching and Mixing Che5700 陶瓷粉末處理 • Batch feed always involves mixing, objective: - high uniformity, high reliability (more judgment (experience) rather science) • Before mixing: action of feeding; next few graphs showing some common equipments, goal: good powder flowability. • Most ideal state of mixing:random homogeneous mixture RHM
Bulk Solid Transport Che5700 陶瓷粉末處理 • Mass flow – first in, first out, good results; • Funnel flow – first in, last out (rat holing); not desirable One way to avoid funnel flow: reduce friction from walls
Properties of Mass of Particles Che5700 陶瓷粉末處理 • Pressure is not the same in all directions: one applied pressure will create some pressures in other directions, but always smaller; related to particle shape and packing; define K’ = normal pressure/applied pressure • Shear applied at surface will be transmitted through a static mass of particles • Density of mass will vary • Before flow, mass of particles will increase its volume first (dilation) • When angular solids are piled up on a flat surface, there will be an angle of repose; (free flowing solids: this angle is between 15 and 30o)
Angle of Friction Angle of storage tank and angle of friction of particle whether particle can free flow, i.e. mass flow or funnel flow; Arching: state when particle can not flow at all Common experience: flow of powder decrease if size of flow unit > 15% of opening size
Cohesive & Noncohesive Solids Che5700 陶瓷粉末處理 Non-cohesive solids (free flowing): K’ 0.35 – 0.6 Cohesiveness: often sensitive to moisture
Angle of friction: influenced by particle size, shape, or even water content, it often increase cohesive force between particles increase angle of friction more difficult to free flow Abrasion: another possible problem with ceramic particles during transportation
Powder Mixing Che5700 陶瓷粉末處理 • More art than science; • Can never achieve perfect mixing like that in fluid phase; • Complete mixing: often refers to specific structure, not attainable from a random process; • Characterization of mixture: I.e. degree of homogeneity - (1) a statistical problem; (2) sample size (scale of scrutiny) consideration – need to be “proper”, too large or too small: little value; e.g. sintering after mixing – then consider diffusion distance during sintering, choose appropriate size for sampling,can be considered as single sample within that size.
Scale of Segregation • The length, area or volume of the largest region of each component in the mixture is referred to “scale of segregation” of that component • In a liquid solution: minimum scale of segregation – size of largest molecules • In a particle system: largest particle size
Sampling size: e.g. adding carotene into powder milk (1/1000), how should we sampling? • Completely random vs completely dispersed • Degree of segregation larger in the former case
Degree of Mixedness Che5700 陶瓷粉末處理 • Use statistical numbers as index of degree of mixing, to discuss uniformity of sample, to compare different mixing equipment and operation conditions. • Statistically, bimodal distribution for mixtures, often use Gaussian or Poisson distribution as examples • E.g. A, B equivalent , except color different, then p,q true fractions; x measured fraction
Mixing Indices Che5700 陶瓷粉末處理 * Sampling analysis:Standard deviation s (s2 = variance) ; where o = standard deviation of original segregated mixture; r = standard deviation of ultimate completely random mixture; s = standard deviation of current sample; N = number of analyzed samples; n = particle number in sample
More Indices Che5700 陶瓷粉末處理 For example: Rose – M = 1 – s/o; (unmixed 0 mixed 1- 1/n1/2) Lacey – M = (o2 – s2)/(o2 - r2) (from 0 1) Kramer – M = (o – s)/(o - r) (from 0 1) Hixon-Tenney-Harvey index: if x > p D1 = (1-x)/(1-p) x < p D2 = x/p x = p D3 = 1 average degree of mixing Da = (N1 D1 + N2 D2 + N3 D3)/N ( x = value of some component in sample, p= expected value)
For different material and different size, use this equnation to calculate RHM的variance; • C1, C2 = fractional concentration of each component • Ms = mass of sample • fw sum of product of the weight fraction f of particles in each size class and the mean particle weight W in the class (could it be f * w; not fw)
Mixing Analysis Che5700 陶瓷粉末處理 • Previous mixing index to evaluate mixing process or effect of parameters, try to minimize error in sampling and analysis. • Macro-scale mixing:by chemical analysis, phase analysis, etc.; Micro-scale mixing: observation by microscopy technique • E.g. use M index:to study time effect, determine optimal condition; indicating de-mixing behavior; mixing – by relative movement of particles:convection, shear, diffusion (three mechanisms). Different equipment provide different mechanisms. • Inverse of mixing segregation (percolation of fines, trajectory segregation, rise of coarse upon vibration)
Important Parameters Che5700 陶瓷粉末處理 • Mixing effect affected by: type of equipment energy input flowability and composition of sampe (size, shape, density, surface characteristics) • For complete description of mixing, one need: sample variance (intensity of segregation) scale of segregation (to micro-scale) long range structure
Microscale and Macroscale Mixedness • Microscale analysis provide information on microscale mixedness • Macroscale mixedness can be analyzed by many technqiues (chemical or physical) • Sampling and analysis error should be kept to a minimum • uncertainty in the standard deviation (s) become low when a large number of samples are taken
Taken from JS Reed, 1995 • Commercial mixers: usually with two or more mixing elements to produce: high shear mixing in a local region & low shear bulk mixing
One example of two mixing elements To avoid vortex, we may add baffles Turbulence and cavitation – for diffusion (micro-scale mixing)
Mechanism in Horizontal Drum Mixer Che5700 陶瓷粉末處理 • Path of circulation: particle move with rotating cylinder, mixing only if change in path of particles • Radial mixing: due to mixing in the gravity direction (drop to a void); velocity gradient important; • Radial de-mixing: core formation, small and heavy particles gradually go to bottom • Axial mixing: diffusion mode • Axial de-mixing: band formation, effect from mixer walls;
Change drum mixer into cone shape, beneficial to mixing; (taken from JS Reed, 1995) cement mixer!
Rate Process Che5700 陶瓷粉末處理 • dM/dt = A (1-M) – B (where is segregation potential; M = 1 - 2) unmixing process In principle: B – effect from equipment; - effect from particle characteristics
Sigma blade mixer Equipment used in mixing of viscous paste (Taken from JS Reed, 1995); (a) helical mixer; (c) double planetary mixer
Extent of reaction depend on degree of mixing and uniformity
Aeration Blending Che5700 陶瓷粉末處理 • Or named fluidized blending, for mixing of different particles. Some advantages: can obtain uniform mixtures, even different in density can be precisely controlled, energy cost/unit weight sample lower easy to operate and maintain large capacity fast and easy loading; many different methods for feeding (e.g. pneumatic, mechanical, gravity) Can use other gases, in addition to air
Che5700 陶瓷粉末處理 Dispersion of Powder into Liquid • Work involved with each step (equilibrium consideration): • Wa = SL – (LV + SV) = -LV (cos +1) negative for any • Wi = 4SL - 4LV =-4LV cos < 90o, negative value • Ws = (SL + LV) - SV = -LV (cos -1) positive value, at=0o, this number is zero • In summary: work must be done to obtain spreading Steps involved: adhesion (a b), immersion (b c) and spreading (c d);
Che5700 陶瓷粉末處理 Contact Angle • cos = (SV - SL) /LV • Wetting implies contact angle < 90o
Che5700 陶瓷粉末處理 Macroscale Mixing and Microscale Mixing • Mixing of viscous slurry with a single impeller: difficult to achieve both ** macrocsale mixing high pumping capacity ** microscale mixing turbulence • Look at two parameters, Re & P (power requirement) ** Re = N s (dia.)2/ …. turbulence ** P/Re = CD N2 (dia.)3 …. Pumping capacity CD: drag coefficient; For high viscosity, same power, but need large Re (microscale mixing) need small size propeller, or increase velocity; yet for small propeller, non-uniformity occur (macroscale mixing)
Mixing and EMI Performance * ABS + Ni powder or fiber mixing (Barbender mixer or dry mixing) composite for EMI measurements
Dry mixing produced better shielding effect than Barbender mixer (in terms of low threshold value)
Barbender mixer produced perfect mixing, not necessary good for EMI purposes; dry mixing produced macro-scale uniformity, not micro-scale uniformity (a) Barbender mixer (powder; 20%); (b) dry mixing (powder 7%); (c) dry mixing (filament, 7%)
Correlation between percent measureable (electrical resistance) of composite of various samples Electrical resistance measurement by 4 point probe