1 / 29

Usuwanie tlenków azotu z gazów odlotowych

Usuwanie tlenków azotu z gazów odlotowych. Metody usuwania NO x z gazów odlotowych: Metody mokre; metody absorpcyjne Metody suche; adsorpcja selektywna redukcja katalityczna, nieselektywna redukcja katalityczna, katalityczny rozk ł ad.

berne
Download Presentation

Usuwanie tlenków azotu z gazów odlotowych

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Usuwanie tlenków azotu z gazów odlotowych Metody usuwania NOx z gazów odlotowych: Metody mokre; metody absorpcyjne Metody suche; adsorpcja selektywna redukcja katalityczna, nieselektywna redukcja katalityczna, katalityczny rozkład

  2. Usuwanie tlenków azotu z gazów odlotowych Metody mokre Metody mokre - absorpcyjne 1. Stosunek molowy NO2/NO = 1, procesy absorpcji w roztworach alkalicznych takich, jak NaOH, Na2CO3, Ca(OR)2, CaCO3, Mg(GH)2, MgCO3 , (NH4)2CO3 (90%) 2. Stosunek molowy NO2/NO << 1 prowadzi sięabsorpcję alkaliczną w obecności substancji utleniających, takich jak podchloryn sodu, podchloryn wapnia, sole żelazowców, ozon, ditlenek chloru, woda utleniona oraz bardzo ekonomiczna metoda - gazy odlotowe są zraszane kwasem azotowym w wieżach absorpcyjnych

  3. Usuwanie tlenków azotu z gazów odlotowych Metody suche, bezodpadowe Adsorpcja NOxna zeolitach 1. Cykl adsorpcji i utleniania 2. Cykl regeneracji Zdesorbowany NO2 kieruje się do kolumny absorpcyjnej w instalacji kwasu azotowego. Metoda adsorpcyjna - wysoka sprawność, jest bezodpadowa, - koszt adsorbentów jest wysoki i regeneracja kolumny

  4. Usuwanie tlenków azotu z gazów odlotowych Metody suche, bezodpadowe Metoda selektywnej redukcji katalitycznej (SRK) Redukcja tlenków azotu do azotu cząsteczkowego za pomocą amoniaku w obecności katalizatora

  5. Usuwanie tlenków azotu z gazów odlotowych Metody suche, bezodpadowe Metoda selektywnej redukcji katalitycznej (SRK) w zakresie 200-300°C 2NH3 + NO +NO22N2 + 3H2O w temperaturze niższej od 150°C zachodzi reakcja 2NO2 + 2NH3 N2 + H2O + NH4NO3 w temperaturze powyżej 320°C 5NO2 + 2NH3 7NO + 3H2O Katalizatory: platynowce: Pt, Rh, Pd oraz tlenki metali przejściowych, np. V2O5, TiO2, MoO3, V2O5 osadzony na TiO2 lubna mieszanym nośniku TiO2-SiO2

  6. Usuwanie tlenków azotu z gazów odlotowych Metody suche, bezodpadowe Metoda selektywnej redukcji katalitycznej (SRK) • Wady metody SRK • stosowanie bardzo drogiego i wysoce korozyjnego oraz toksycznego amoniaku • katalizator platynowy • mała odporność na zatrucia przez metale ciężkie,tlenki siarki i związki halogenowe • wymagane jest wcześniejsze wstępne oczyszczenie gazów odlotowych, gdyż zawarte w nich cząstki popiołów lotnych powodują obniżenie aktywności katalitycznej

  7. Usuwanie tlenków azotu z gazów odlotowych Metody suche, bezodpadowe Metoda nieselektywnej redukcji katalitycznej 2NO + 2H2  N2 + 2H2O 2NO2 + 4H2 N2 +4H2O 4NO +CH4 2N2+CO2+2H2O 2NO2 + CH4  N2 + CO2 + 2H2O 2NO + 2CO  N2 +2CO2 2NO2 +4CO N2 + 4CO2 Redukcję nieselektywną katalizują katalizatory platynowe i palladowe, a także tlenki metali przejściowych osadzone na tlenkach krzemu, glinu lub glinokrzemianach.

  8. Oczyszczanie gazów odlotowych kataliza Budowa i działanie katalizatora 1 - warstwa katalityczna2 - warstwa pośrednia z promotorami3 - nośnik ceramiczny

  9. Usuwanie tlenków azotu z gazów odlotowych Metody suche, bezodpadowe Metoda katalitycznego rozkładu tlenków azotu NOx N2 + x/2O2 Katalizatory dla rozkładu NOx- zeolity dotowane jonami miedzi lub platyny NOx jest adsorbowany na centrach aktywnych, w tym wypadku atomach metalu ( np. Cu lub Pt). W wyniku oddziaływania z atomem metalu przebiega reakcja chemiczna: M + NO  M-NO  M-O + M-N 2M-O + 2M-N  4M + N2 + O2

  10. Zapobieganie emisji dwutlenku węgla http://www.czystaenergia.pl/pdf/poleko2008_2_4.pdf

  11. Oczyszczanie gazów odlotowych z dwutlenku węgla • Sposoby separacji ditlenku węgla z gazów odlotowych: • Absorpcja • Adsorpcja • Separacja membranowa • Separacja kriogeniczna

  12. Oczyszczanie gazów odlotowych z dwutlenku węgla Absorpcja Absorpcja przy niskich temperaturach i wysokim ciśnieniu; desorpcja proces odwrotny. Wstępnie oczyszczony CO2 ; rozpuszczalniki to aminy np.: monoetyloamina, dietyloamina, roztwór amoniaku, wodorowęglan potasu

  13. Oczyszczanie gazów odlotowych z dwutlenku węgla

  14. Oczyszczanie gazów odlotowych z dwutlenku węgla Adsorpcja Adsorbenty: węgiel aktywny, koks aktywny, zeolity, żel glinowy i krzemnionkowy. Dwa cykle: 1. Adsorpcja 2. Odzysk ditlenku węgla (regeneracja adsorbenta) zmiennociśnieniowa zmiennotemperaturowa

  15. Oczyszczanie gazów odlotowych z dwutlenku węgla Schemat instalacji do pochłaniania CO2z gazów spalinowych w elektrowni węglowej CO2 + CaO  CaCO3

  16. Oczyszczanie gazów odlotowych z dwutlenku węgla • Separacja kriogeniczna • Sprężanie i chłodzenie gazu, a następnie wydzielenie CO2 w postaci ciekłej. • Geologiczne składowanie CO2 • Głębokie poziomy wodonośne-solankowe. • Wyeksploatowane i częściowo wyeksploatowane złoża ropy i gazu. • Głębokie nieeksploatowane pokłady węgla, zawierające metan.

  17. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi • Do usuwania związków organicznych z gazów odlotowych wykorzystuje się następujące procesy: • Absorpcję • adsorpcję • kondensację (skraplanie par) • utlenianie (głównie do CO2, H2O) • ultrafiltrację • Metody regeneracyjne • Metody regenaracyjne usuwania organicznych rozpuszczalników z gazów odlotowych są to przeważnie metody wykorzystujące zjawisko absorpcji,adsorpcji, kondensacji, filtracji.

  18. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi Metody regeneracyjne ABSORPCJA Sposób usuwania par rozpuszczalników organicznych z powietrza, oparty na ich: - absorpcji w wysoko-wrzącym rozpuszczalniku organicznym, - desorpcji, - ewentualnie spaleniu katalitycznym desorbowanych mediów. Stosowane absorbenty: Chloro-, nitro- i alkilo- pochodne węglowodorów aromatycznych, alkohole, aldehydy, ketony, estry kwasów organicznych, węglowodory alifatyczne, węglowodory heterocykliczne, olejewysokowrzące, eter polietylenoglikolowy. Wady: wtórne zanieczyszczanie środowiska toksycznymi i odoroczynnymi parami i ściekami oraz wysoki koszt cieczy absorpcyjnych.

  19. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi Metody regeneracyjne

  20. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi Metody regeneracyjne ADSORPCJA • Sposób usuwania par rozpuszczalników organicznych z powietrza, oparty na ich: • -adsorpcji- adsorbenty: węgiel aktywny, silkażel, zeolity, glinokrzemiany • -desorpcji: • -z węgla aktywnego- za pomocą strumienia pary wodnej. • -z glinokrzemianów- ogrzewanie warstwy adsorbenta do temperatury wrzenia zaadsorbowanej substancji, przepływ (przedmuchiwanie) gazu obojętnego przez warstwę nasyconego adsorbenta oraz przez kombinację wymienionych metod. • Adsorbenty jednorazowego i wielokrotnego stosowania. • Wady • wymagają dokładnego odpylenia gazów i ich wstępnego osuszenia, • są to metody kosztowne, wymagające stosowania wielostopniowych instalacji.

  21. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi Metody regeneracyjne ADSORPCJA

  22. Oczyszczanie gazów odlotowych z LZO Metody regeneracyjne Metody membranowe Separacja membranowa oparta jest na selektywnej przepuszczalności lotnych związkỏw organicznych (LZO) przez membrany ze środowiska powietrza. Membrany – organiczne np.:guma silikonowa (polidimetylosiloksan), - nieorganiczne: ceramiczne, metalowe Strumienie stężone LZO > 1000 ppm. Często jest stosowana razem z kondensacją jako drugi etap oczyszczania.

  23. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi • Metody nieregeneracyjne • Utlenianie związków organicznych : • spalanie bezpośrednie (w płomieniu)(temp. ~1500 K) • spalanie termiczne (900-1400 K) • utlenianie katalityczne (500-900 K) • metody biologiczne (280-330 K, opt. 310 K)

  24. Oczyszczanie gazów odlotowych z LZO Metody nieregeneracyjne Utlenianie węglowodorów Utlenianie węglowodorów przebiega zgodnie z równaniem: CnH2n+2 + (3n+1)/2 O2 nCO2 + (n+1)H2O CH4 + 2O2 CO2 + 2H2O

  25. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi • Metody nieregeneracyjne • Bezpośrednie spalanie w płomieniu • Wymagane duże stężenia związków organicznych. • Zastosowanie –spalanie odpadowych gazów palnych: • w rafineriach • na polach naftowych • niekiedy w oczyszczalniach scieków (gazy fermentacyjne)

  26. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi Metody nieregeneracyjne Spalanie termiczne polega na dozowaniu odpadów gazowych palnych do palnika zasilanego gazem ziemnym. Ten rodzaj spalania jest bardzo energochłonny i kosztowny. Temp. 800 – 1200oC. Temp <1400oC.

  27. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi • Metody nieregeneracyjne • Spalanie termicznestosuje się gdy: • stężenie LZO jest zbyt małe, aby podtrzymywać płomień • nie można wykorzystać metod katalitycznych (mieszanina gazów zawiera składniki, które mogą powodować szybką dezaktywację katalizatora) • Zastosowanie: • lakierowania i emaliowania, • suszenia powłok malarskich • żelowania PCV • przeróbki asfaltów • drukarnie

  28. Oczyszczanie gazów odlotowych z zanieczyszczeń związkami organicznymi Spalanie termiczne

  29. Oczyszczanie gazów odlotowych z LZO Katalityczne utlenianie węglowodorów - w przypadku niskich stężeń węglowodorów w gazach odlotowych. Temperatura rzędu 250-400oC. Katalizatory- metale osadzone na nośniki nieorganiczne. Katalizatory pełnego spalania węglowodorów - zawierają platynę i pallad. Mniej aktywne - tlenki metali Cu, Mn, Cr. Fe, Co, Sn, Ni, Zn.

More Related