290 likes | 432 Views
Snow Pack Analyser SPA. Contents. History Principle of Measurement SPA Snow Parameters SPA System Sensor Setups Examples Summary. 2001 . . 2004. 2004 . . . 2008. 2009. History. Snowpower: EU research project FZK Karlsruhe (Germany) SLF Davos (Switzerland)
E N D
Snow Pack Analyser SPA Snow Pack Analyser, May 2009
Contents • History • Principle of Measurement • SPA Snow Parameters • SPA System • Sensor Setups • Examples • Summary Snow Pack Analyser, May 2009
2001 . . 2004 2004...2008 2009 History • Snowpower: EU research project • FZK Karlsruhe (Germany) • SLF Davos (Switzerland) • KTH Stockholm (Sweden) • Hydro-Quebec (Canada) • INRS (Canada) • Sommer (Austria) • Sensor Development and Improvement • Snow Pack Analyser SPA Test site Davos, SLF Test site Quebec, Hydro Quebec Snow Pack Analyser, May 2009
Principle of measurement • Three components of snow: ice, water and air • Frequency dependence of dielectric constants • Measuring of complex impedance at minimum two frequencies • Estimation of the volume contents of the components • Calculation of the density • Calculation of SWE in combination with snow depth Real part Water Ice Dielectric Constant Imaginary part Frequency [Hz] Snow Pack Analyser, May 2009
SPA Snow Parameters • Snow density • Snow water equivalent SWE • Contents of ice and liquid water in snow • Snow depth • Snow temperatures (optional) • Profile • Ground • Surface Snow Pack Analyser, May 2009
SPA System • Sensor • Length between 3 and 10 m (standard 5m) • Width of 6 cm • Suspension • Sloping or horizontal installation • Displacement sensor • Snow Depth Sensor • Transit-time measurement of ultrasonic pulse • Temperature compensation • Measurement and control unit • Impedance analyzer • Multiplexer for 1 to 4 cables • Calculation of snow parameters • RS 232 data output Snow Pack Analyser, May 2009
Snow Depth DC 10..15 V SPA Snow Pack Analyser Sensor 1 RS 232 • Output Data: • Sensor 1..4 • - Density • - SWE • - Liquid Water Content • - Ice Content • - Snow Depth • - Temperatures Sensor 2 • Input Data: • Sensor 1..4 • - Length • - Top Level • - Bottom Level Sensor 3 Sensor 4 Temperatures Measurement and Control Unit Snow Pack Analyser, May 2009
Common Setup Combination of sloping and horizontal sensors -> Snow parameters of integral snow cover -> Additional data at specific levels Snow Pack Analyser, May 2009
Profile Setup Multiple horizontal sensors at defined levels -> Profile Information -> For research of snow pack layers; viewing the snow’s absorption of rain and melting process Snow Pack Analyser, May 2009
Area Setup Star shaped installation of multiple sensors -> Data with high areal information -> Remote sensing pixel size for satellite imaging Snow Pack Analyser, May 2009
Davos Davos (Switzerland) – 2660 m Snow Pack Analyser, May 2009
Davos Davos (Switzerland) – 2660 m Snow Pack Analyser, May 2009
Davos 2006/2007 Davos (Switzerland) - Sloping Sensor - 10 m Snow Pack Analyser, May 2009
Davos 2008/2009 Davos (Switzerland) - Sloping Sensors - 10 and 5 m Snow Pack Analyser, May 2009
Davos 2008/2009 Davos (Switzerland) - Horizontal Sensors - 10 and 5 m Snow Pack Analyser, May 2009
Davos (Switzerland) - Horizontal Sensors - 10 and 5 m Davos 2008/2009 Snow Pack Analyser, May 2009
Korsvattnet Korsvattnet (Sweden) – 700 m Snow Pack Analyser, May 2009
Korsvattnet Korsvattnet (Sweden) – 700 m Snow Pack Analyser, May 2009
A B Korsvattnet 2008/2009 Point A Increase of liquid water content No changes in snow depth and snow pillow -> Begin of melting process Point B At about 7-8 % liquid water content Decrease of snow pillow -> Begin of run-off Korsvattnet (Sweden) - Horizontal Sensor - 5 m Snow Pack Analyser, May 2009
A C B Run-Off Forecast • Point A • Snow compression • SWE constant • Point B • Significant increase of liquid water content prior to the start of run-off (point C) • Point C • Run-off starts • SWE decreases Davos (Switzerland) - Sloping Sensor - 10 m Snow Pack Analyser, May 2009
Hindelang Hindelang (Germany) – 980 m Snow Pack Analyser, May 2009
B C A Snow Cover with Ice Layers Point A SPA and snow pillow show similar data Point B Appearance of ice layers in snow pack Point C Snow depth stays constant Snow pillow fluctuates SPA does not fluctuate Hindelang (Germany) – Sloping Sensor – 5 m Snow Pack Analyser, May 2009
Foehn Event Point A Temperature > 0°C Slight increase of snow density and liquid water content Point B Foehn event causes sudden increase of liquid water content above saturation of snow pack -> run-off situation -> risk of wet snow avalanches B A Hindelang (Germany) – Sloping Sensor – 5 m Snow Pack Analyser, May 2009
B A Daily Variation of Liquid Water Point A High liquid water content Points B Slight increase of liquid water above saturation causes sudden rise of liquid water. This liquid water is reduced by run-off. -> Buffer behavior of snow regarding to liquid water Hindelang (Germany) – Horizontal Sensor – 5 m Snow Pack Analyser, May 2009
A B Daily Variation of Liquid Water Point A Maximum of air temperature Point B Begin of increasing water content -> Shift between air temperature and liquid water content Hindelang (Germany) – Horizontal Sensor – 5 m Snow Pack Analyser, May 2009
Summary • On-site measurement of snow parameter • Liquid water content • Snow density • Snow water equivalent • Snow depth • Specific setup of sensors • Integral snow pack • Profile data • High areal information • Forecasting the start of water run-off • Flood Warning • Maximization of use and storage of water in reservoirs • Improved forecasting of wet snow avalanches • Not influenced by ice layers • Simple installation even at hillsides Snow Pack Analyser, May 2009