150 likes | 460 Views
ζ. Dr Frost. Brackets. Objectives: Be able to ‘expand’ brackets in algebraic expressions. Brackets. x. 2. 4. Find the area Therefore, work out how we can remove the brackets in 4(2 + x). Brackets. 4(2 + x). 8. + 4x. =. Brackets. x(y - 3). = xy - 3x. ?. Brackets.
E N D
ζ Dr Frost Brackets Objectives: Be able to ‘expand’ brackets in algebraic expressions.
Brackets x 2 4 Find the area Therefore, work out how we can remove the brackets in 4(2 + x)
Brackets 4(2 + x) 8 + 4x =
Brackets x(y - 3) = xy - 3x ?
Brackets Click to give hint (x - 3) - 1 = -1x + 3 ? = -x + 3 ?
a(x + 3) ? ax + 3a
a(x + 3) 3(2 + 5y) ax + 3a ? 6 + 10y
? an + bn + 3n a(x + 3) 3(2 + 5y) n(a + b + 3) ax + 3a 6 + 10y
an + bn + 3n a(x + 3) 3(2 + 5y) n(a + b + 3) -(n + 2) ax + 3a 6 + 10y ? -n - 2
an + bn + 3n a(x + 3) 3(2 + 5y) n(a + b + 3) -(n + 2) 3a – 2(a –b) ax + 3a 6 + 10y ? -n - 2 a – 2b
an + bn + 3n a(x + 3) 3(2 + 5y) n(a + b + 3) ? n + 7 3(n+3) – 2(n+1) -(n + 2) 3a – 2(a –b) ax + 3a 6 + 10y -n - 2 a – 2b
an + bn + 3n a(x + 3) 3(2 + 5y) n(a + b + 3) n + 7 3(n+3) – 2(n+1) -(n + 2) 3a – 2(a –b) ax + 3a 6 + 10y 2(a+1) -(a-2) -n - 2 a – 2b ? a + 4
an + bn + 3n a(x + 3) 3(2 + 5y) n(a + b + 3) n + 7 3(n+3) – 2(n+1) -(n + 2) 3a – 2(a –b) ax + 3a 6 + 10y 2(a+1) -(a-2) 3(2x+6) – (7-3x) + 3(3x+5x) -n - 2 a – 2b ? a + 4 39x + 11
an + bn + 3n a(x + 3) 3(2 + 5y) n(a + b + 3) n + 7 3(n+3) – 2(n+1) -(n + 2) 3a – 2(a –b) ax + 3a 6 + 10y 2(a+1) -(a-2) 3(2x+6) – (7-3x) + 3(3x+5x) -n - 2 a – 2b a + 4 39x + 11
Exercises If you finish: Work out the area of this shape by: Adding each of the smaller areas. Working out the area of the big square by using the total width and total height. Therefore, what is (a+b)2when expanded? • Exercise 1: • Q1, 4, 7, 10, 13 • Q16-36 (evens) • Exercise 2: • Q1-22 b a a b