1 / 24

CLAS12 Micromegas Tracker: FE electronics eric.delagnes@cea.fr

CLAS12 Micromegas Tracker: FE electronics eric.delagnes@cea.fr. Introduction:. Nearly no work made on the FEE since the May review. 50% of the slides already shown. Real work cannot start before March 2010. Preliminary study for compatibility with SVT. Outline:

betha
Download Presentation

CLAS12 Micromegas Tracker: FE electronics eric.delagnes@cea.fr

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CLAS12 Micromegas Tracker:FE electronicseric.delagnes@cea.fr

  2. Introduction: • Nearly no work made on the FEE since the May review. • 50% of the slides already shown. • Real work cannot start before March 2010. • Preliminary study for compatibility with SVT. • Outline: • Main Specification for the MicromégasTracker FE chip. • VFE expected performances (starting from AFTER ones). • Selected Architecture. • MTFEC for SVT ? • Plans.

  3. Features common to all FE solutions: Technology choices • Technology choices: • Use an existing chip: there are not a lot of available tracker chip adapted to both analog readout and large detector capacitances: the APV0.25 designed for CMS could be an option (under evaluation): + nearly a perfect chip + we already use it. • APV availability • APV not designed for high detector capacitance. • Large occupation time (RC-CR shaping). • New chip: • Using a well known technology (AMS CMOS 0.35µm): + very front-end part nearly already designed. • Chip size if integrates a lot of digital electronics. • Using a more recent technology: + long term availability. + prepare the future for our lab. + Less power consumption +? Less noisy. • more risky and longer development .

  4. Features common to all FE Chip solutions • Packaging, modularity: • For Mmegas Prefer a QFN/QFP package (no bare die). • 32-64 channel/chip is the best modularity for integration on FE boards. • 128 channel/chip => big chip + package difficult to handle during test. • Power consumption • As we are outside the magnet, the requirements can be relaxed/ ~5 mW/ch for the FE Chip. • Configuration (Slow-control) Link: • To program test modes, peaking time, ranges, etc. • Test system: • Each Channel can be pulsed individually (or all together). • For test purpose and not absolute calibration. • Input Protections: • Designed to reduce the size (or even the need) of the external protections.

  5. Requirements for the CLAS12 MM electronics (1). • For the moment only the barrel has been studied • Use of standard (without resistive sheet) Micromegas assumed • ~20000 channels • Electronics moved away from detector using 0.8m Kapton cables • Particle rate < 20MHz • Hit Rate=> 48 kHz/strip (considering cluster size=4) • External trigger with Max Trigger Rate = 20 kHz, fixed latency =4.5µs • Inefficiency due to electronics ~ 2% • Ghost hits/trigger < 8/view. Noise hits rate negligible • Main functionalities (not necessary performed in this order): • Collect, amplify and filter the detector signal • Discriminate pulses • Timestamp pulses • Select pulses within a L1W ( = 100ns) window around the L1 accept signal • Measure signal charge (for centre of gravity calculation) • Many requirements very similar to those of COMPASS tracker

  6. Requirements for the CLAS12 Micromegas electronics (2). • Channel Occupancy: • Tocc <250ns to keep occupancy < 1.2% • High order filtering (symmetrical shape). • Shaping peaking time must be • Large: • To avoid ballistic deficit . • To Minimize noise. • Small: • to limit occupancy • to be Compatible with L1W=100ns From calculations and experience from COMPASS: ~100ns peaking time should be ok => Tunable between 50-250ns.

  7. Requirements for the CLAS12 Micromegas electronics (3). • Dynamic Range: • 600: 9-10 bit Max Signal over ENC required. - Max Charge = 10 MIP - Threshold = MIP/10 for efficiency - Threshold = 6 * Thresholds set to 6*ENC (for noise rejection). • Max range (and MIP) depends on the detector gain => Variable gain front-end: 4 ranges selectable by slow control: • i.e 160, 320, 640 fC for Micromegas. • ~ 40 fC range for Si detectors. Exemple: For the160fC range: => MIP = 100 Ke- => Th = 10 Ke – => ENC should be around 1500 e- rms (gives a S/N=60) Feasible with our large detectors (+ kapton cables) ?

  8. What we can learn from the AFTER chip • AMS 0.35µm technology. • Designed for the TPC of T2K. • Slow Readout (incompatible with use in trackers) • But very versatile: • shaping time, dynamic range are ~matching with our needs. • Front-end part could be re-used nearly as it is associated with a custom back-end. • Modifications (50ns shaping) in progress for another experiment. • Noise deeply tested: a complete parameterization has been extracted: • Ability to predict the noise in other conditions. • 1Mrad radiation hardness demonstrated in another similar chip we designed using the same technology.

  9. Power Supply Reference Voltage Reference Current x72(76) AFTER 1 channel 120fC<Cf<600fC BUFFER 76 to 1 FILTER SCA CSA ADC 511 cells 100ns<tpeak<2us Power On Reset SLOW CONTROL SCA MANAGER Asic Spy Mode TEST W / R CK In Test Serial Interface Mode CK CSA;CR;SCAin (N°1) AFTER ASIC design for T2K IEEE Trans. Nucl Sci, June 2008 • No zero suppress. • No auto triggering. • No selective readout. • AMS 0.35µm techno • 500000 transistors • Main features: • Input Current Polarity: positive or negative • 72 Analog Channels • 4 Gains: 120fC, 240fC, 360fC & 600fC • 16 Peaking Time values: (100ns to 2µs) • 511 analog memory cells / Channel: • Fwrite: 1MHz-50MHz; Fread: 20MHz • Optimized for 20-30pF detector capa • 12-bit dynamic range • Slow Control • Power on reset • Test modes • Spy mode on channel 1: • CSA, CR or filter out

  10. Requirements for the CLAS12 Micromegas electronics (3). • Noise: • Must be minimized to be able to operate at low gain (if necessary to reduce spark rate). • Huge Flex + detector capacitance of 60-80 pF. • 1600-2000 ENC (for very low gain operation) seems feasible even with short shaping time: • From COMPASS experience. • From measurements on the AFTER chip. ENC versus input capacitance for different peaking times (120 fC range, ICSA=400 µA). Measured on the AFTER chip.

  11. VFE part of the Chip: ~ same as for AFTER

  12. 3 possible options for the FE chip architecture were proposed ONLY DEAD TIME-”FREE” solutions (with dual-port L1 buffers) are proposed • ASD + multihit TDC: • Similar to Micromegas COMPASS tracker readout. • Time Stamping + analog memory: • Trigerless Front-end. • Selective Readout. • Analog Memory L1-Buffer (APV-like): • Similar to GEM COMPASS tracker readout. • Solution selected: • Better noise rejection. • Minimum work for us : the only which could match with the schedule and the available manpower.

  13. c510 c511 c0 c1 c. ci-2 ci+2 ci-1 ci+1 ci Analog Memory L1 buffer solution (APV-like solution) • A Switched Capacitor Array is used as a circular analogue buffer: • The analog signals of all the channels is continuously sampled at Fs in a Switched Capacitor Array (analogue memories). • When a L1-Trigger occurs it is sent to the chips with a FIXED LATENCY (TLAT): • 3-4 samples on all channels are kept (frozen) for each triggered event. • They are read and multiplexed towards an external ADC @ Fread. • Cells are rewritten after readout or if no trigger occurs during after TLAT. • Dead Time “Free” architecture: • No interruption of writing during readout of a triggered event. • several triggered events can be stored in the SCA waiting for readout. • No on-chip zero suppress: all channels are read for a trigger. Event Trigger latency Write pointer Read Pointer N cells Triggered cells

  14. SCA: Key parameters Fs> 2/Tp (2 samples in the trailing edge) => Fs = 20 MHz for Tpeak =100ns SCA DEPTH = Latency + buffer + extra cells • 8 µs latency => 160 cells. • 10 events derandomizing buffer => 40 cells • SCA depth = 256 512 cells is feasible but increase cost

  15. Main advantages of this solution • Charge is directly measured. • Oscilloscope-like operation makes diagnostics easier. • The timing can be accurately calculated from the samples: • better than 1/Fs precision: In ATLAS LARG ECAL 1ns rms timing performed with FS=40 MHz (and tp=50ns) • Pile-up can be detected and even compensated. • Common mode noise can be calculated and subtracted. • Low frequency noise can be partially eliminated (by subtracting baseline samples). • Operations are performed before zero-suppress (discrimination)

  16. L1 Accept Common mode Noise extract + subtraction FE CHIP Timing Extraction + filter Zero Suppress ADC Analog sampling solution (APV-like solution) • Data flow for the whole MM tracker~ 1600 MByte/s @ the ADC output. • Becomes 20 MByte/s after zero suppress. • Can be reduced by 3 if an online filtering on timing is performed. • For: • Simple & Proven • Very robust to bad grounding & pickup (common mode node correction) • Expertise of Saclay on SCAs • Against: • Need for high frequency ADC & FPGAs close to the very front-end. • Not self triggered • Need for a L1accept “fast” and synchronous.

  17. Use of the Micromégas chip with SVT ? • Possible issues: • Input DC current limited to 5nA. Can be a problem with DC coupled Si detectors: • AC or DC coupled ? • Increasing DC current capabilities under study. • Power consumption: • 5mW/ch planned for MM readout => cooling issue. • Low power mode for Silicon detectors ? • Can we move away the electronics (as for MM) ? • Noise: • Preliminary study made using: • AFTER parameterization. • Data from the “ENC calculations for Barrel Modules of the SVT  “Note assuming there is a mistake in the leakage current specification (20nA/ch inst. of 5uA/ch). • A note (+excell file) will be available soon.

  18. Few words about the noise: • Expressed as Equivalent Nose Charge => input refered noise. • Several sources, adding quadratically,can be categorized • Parallel noise: current noise at chip input. Scales as tp1/2 • Serie noise: voltage noise at chip input. Scales as Cdet and tp-1/2 • 1/f noise: 1/f noise of preamp: Scales as Cdet. Constant with tp. • 2nd stage noise : constant. • Analytical model takes into acount these noise sources. • Parameters come from: • Measurements on AFTER • Simulation • Theory

  19. ENC Model In red: Chip Parameters: (extracted from measurements) In blue: detector parameters (calculated from theory) Tp: « free parameter »

  20. AFTER: measurement compared to model Measurements (Ibias=400µA) Analytical model (Ibias=400µA)

  21. ENC simul for SVT with AFTER-like FE • Detector Parameters taken from “equivalent Noise Charge calculations for Barrel Modules of the SVT” (exceptedIdet) • Simulations on : • 3 ranges + 3 ranges with 40pF added (to simulate a kapton cable): • 3 shaping times (50 ns,100ns, 200ns). • 2 bias currents for input transistor (5 &6mW/ch).

  22. SVT ENC simulation: noise contributions, 5.5mW/ch/ tp=50ns ENC isclearlydominated by serie noise => Improvement expected for highertp FEMTC model (tp=50ns) => SVT Note (tp=65ns) (reference)=>

  23. SVT ENC simulation: varying tp, IPOL Withtp>=100ns & Power=6.5mW => ENC< 2000 e- (S/N>11) for range 1&2 including 40pF kaptonscables : Wecould imagine to move SVT electronicsaway…

  24. Short term plans. • No manpower in microelectronics for this project before March 2010. • VFE part with 50ns shaping is currently designed for GET. • Study the use of this chip with Silicon detectors. • Definition of Digital/DAQ electronics and of integration => Irakli talk. • Before summer 2010: Submission of a small size FE chip prototype : • 16 channels x 128 cells for lower prototype cost. • Test during the fall. • Check the possibility to use APV: • “successful test” with new large Micromégas of COMPASS last summer , but detailed analysis of beam data are required to check the efficiency).

More Related