360 likes | 632 Views
SINUSOIDAL STEADY-STATE POWER CALCULATIONS. Prepared by: Ertuğrul Eriş Reference textbook: electric Circuits, Nilsson/Riedel. Updated: November 2011. INSTANTANEOUS POWER. Zero time: the instant the current passing through a positive maximum. This reference system requires
E N D
SINUSOIDAL STEADY-STATE POWER CALCULATIONS Prepared by: Ertuğrul Eriş Reference textbook: electric Circuits, Nilsson/Riedel Updated: November 2011 Ertuğrul Eriş
INSTANTANEOUS POWER Zero time: the instant the current passing through a positive maximum. This reference system requires a negative phase shift of both the voltage and current by θi. Ertuğrul Eriş
SINUSOIDAL SOURCE Cos(ωt+Φ) Cos ωt Phase shift +→Left _ - →Right Ertuğrul Eriş
INSTANTANEOUS POWER, AVERAGE AND REAVTIVE POWER Ertuğrul Eriş
POWER First term in instantaneus Power, average Power (Real Power), constant, transformed to non electrical energy(light, heat) this energy is charged by the power companies Second and third terms in instantaneus Power, frequency doubled, related average energy over a period is zero Power factor (güç faktörü) = 0 max power cos(φ), φ=θv-θi = π/2 power (0) Ertuğrul Eriş
POWER FOR PURELY RESISTIVE CIRCUITS ω=377 rad/sn, f=60 hz Amplitude, Vmİm=2 assumed Ertuğrul Eriş
«LAGGING POWER» FOR PURELY INDUCTIVE CIRCUITS Reactive Power unit VAR(Volt Amper Reactive) Amplitude, Vmİm=2 assumed Ertuğrul Eriş
«LEADING POWER» FOR PURELY CONDUCTIVE CIRCUITS Reactive Power unit VAR(Volt Amper Reactive) Amplitude, Vmİm=2 assumed Genlik, Vmİm=2 düşünülmüştür Ertuğrul Eriş
EXAMPLE Ertuğrul Eriş
RMS(ROOT MEAN SQUARE) VOLTAGE/CURRENT VALUES Ertuğrul Eriş
POWER DELIVERED TO A RESISTOR «R» FOR AC AND DC SOURCES Ertuğrul Eriş
EXAMPLE Ip=180mA Ertuğrul Eriş
COMPLEX POWER /PHASORS Ertuğrul Eriş
EXAMPLE P=8 kW V=240 V rms Pf=0.8 Complex S? Load empedance? S=8+j6 KVA Z= 5.76ej36.87=4.608+j3.456 Ertuğrul Eriş
VARIOUS POWER CALCULATIONS S= VeffI*eff= (1/2)VI* Veff=Veffejθv Ieff=Ieffejθi Ertuğrul Eriş
POWER CONSUMPTIONS FOR SOME HOME APPLIANCES • Heater 1-2KW • Owen 1-2KW • Refrigerator 200-250W • Washıng Machine 600-1000W • TV 100-200W • Vacuum cleaner 500-1000W • Dishwasher 700-1000W Ertuğrul Eriş
ALTERNATE FORMS FOR COMPLEX POWER S=ZIeffI*eff P=|Ieff|2R=(1/2) im2 R Q=|Ieff|2X=(1/2) im2 X P= =|Veff|2/R Q= =|Veff|2/X Ertuğrul Eriş
EXAMPLE-1: POWER COMPENSATION precompensatıon Vm=(R2+ω2L2)1/2 I1m φ= φv- φi=atctg(ωL/R) φ=530 cos φ=0,6 I1m =19,3 A I1eff =13,7 A Pave = 1876 Watt Preactive=2409 VAR aftercompensation C=155μF Vm=(R2+ω2L2)1/2 I1m φ=00 Cos φ=cos( φv- φ ) =1; Sin φ=0 ZL= | ZL |e j φ= | ZL |= R / (1-ω2LC)2+ ω2R2C2=25.8 Resistive! Im =12 A I1m =19,3 A Ieff =8,53 A I1eff =13,7 A Pave = 1876 Watt Preactive=0 VAR Ertuğrul Eriş
EXAMPLE 2 SLoad=975+j650; Sline=25+j100; delivered power: Ss=-(1000+j750) Ertuğrul Eriş
EXAMPLE 2 Ertuğrul Eriş
MAXIMUM POWER TRANSFER Ertuğrul Eriş
MAXIMUM POWER TRANSFER Ertuğrul Eriş
EXAMPLE 1 Ertuğrul Eriş
EXAMPLE 2 Ertuğrul Eriş
EXAMPLE 3 a. What impedance should be connected across terminals a,b for a maximum power transfer b. What is the maximum power transferred to the impedance in (a)? c. Assume that the load is restricted to pure resistance. What size resistor connected across a,b will result in the maximum aserage power transfer? d. What is the maximum power transferred to the resistor in (c)? ig=3cos5000t A a. 20-j10; b.18W; c. 22.36Ω; d.17W Ertuğrul Eriş
EXAMPLE 4 İ2(rms)=840/140 Ertuğrul Eriş
PROGRAM DESIGN DEPT, PROGRAM G R A D U A T E S T U D E N T STUDENT P R OG R A M O U T C O M E S PROGRAM OUTCOMES P R OG R A M O U T C O M E S STATE, ENTREPRENEUR FIELD QALIFICATIONS EU/NATIONAL QUALIFICATIONS KNOWLEDGE SKILLS COMPETENCES NEWCOMERSTUDENT ORIENTIATION GOVERNANCE Std. questionnaire ALUMNI, PARENTS ORIENTIATION STUDENT PROFILE Std. questionnaire FACULTY NGO STUDENT, ??? CIRCICULUM ??? INTRERNAL CONSTITUENT Std. questionnaire EXTRERNAL CONSTITUENT EXTRERNAL CONSTITUENT REQUIREMENTS EU/NATIONAL FIELD QUALIFICATIONS PROGRAM OUTCOMES QUESTIONNAIRES QUALITY IMP. TOOLS GOAL: NATIONAL/INTERNATIONAL ACCREDITION
BLOOM’S TAXONOMYANDERSON AND KRATHWOHL (2001) !!Listening !! Doesn’t exits in the original!!! http://www.learningandteaching.info/learning/bloomtax.htm Ertuğrul Eriş
ULUSAL LİSANS YETERLİLİKLER ÇERÇEVESİ BLOOMS TAXONOMY Ertuğrul Eriş
COURSE ASSESMENT MATRIX LEARNING OUTCOMES Devre Analizi İlk Ders
‘ABET’ ENGINEERING OUTCOMES Ertuğrul Eriş