1 / 31

Measuring Rotational Motion

Measuring Rotational Motion. Chapter 7 Section 1. What is Rotational Motion?. Rotational Motion – The motion of a body that spins about an axis. Examples: Ferris Wheel Bicycle Wheel Merry-go-round Etc…. Circular Motion.

bevis
Download Presentation

Measuring Rotational Motion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measuring Rotational Motion Chapter 7 Section 1

  2. What is Rotational Motion? • Rotational Motion – The motion of a body that spins about an axis. • Examples: • Ferris Wheel • Bicycle Wheel • Merry-go-round • Etc…

  3. Circular Motion • A point that rotates about a single axis undergoes circular motion around that axis. • Regardless of the shape of the object, any single point on the object travels in a circle around the axis of rotation.

  4. Linear motion here? Think again • Its difficult to describe the motion of a point in a circular path through linear quantities, because the direction of the motion is not in a straight line path. • Therefore it is describe in terms of angle through which the point on an object moves.

  5. Rotational Motion • When rotational motion is described using angles, all points on a ridged rotating object, except the points on the axis move through the same angle during any time interval.

  6. r s θ Reference Line • r = radius • θ = angle • s = arc length

  7. Radians • Radian – An angle whose arc length is equal to its radius, which is approximately equal to 57.3º • The radian is a pure number with no dimensions. • In almost all of the equations in chapter 7 and chapter 8 will use radians instead of degrees.

  8. Radian Chart

  9. Radian Equations • Any angle θ, measured in radians, is defined as the following: • To convert degrees to radians, or vise versa, use the following equation:

  10. Angular Displacement • Angular Displacement – The angle through which a point, line, or body is rotated in a specific direction and about a specified axis. • In simple terms, angular displacement describes how much an object has rotated. • It is not a distance!

  11. Angular Displacement Equation • Δθ = angular displacement (in radians) • Units for angular displacement: rad • Δs = change in arc length • r = distance from axis • When Δθ rotates: • Clockwise – Negative • Counter-clockwise – Positive

  12. Recall • Recall that Δ is a capital Greek letter, “delta” • It means, “Change in” • It is always the final minus the initial • Example: • Δθ = θf-θi

  13. Example Problem • Earth has an equatorial radius of approximately 6380km and rotates 360º in 24 hours. • What is the angular displacement (in degrees) of a person standing on the equator for 1.0 hour? • Convert this angular displacement to radians • What is the arc length traveled by this person?

  14. Example Problem Answer • 15º • 0.26 rad • Approximately 1700km

  15. Example Problem • Earth has an average distance from the sun of approximately 1.5x10^8 km. For its orbital motion around the sun, find the following: • Average daily angular displacement • Average daily distance traveled

  16. Example Problem Answer • 1.72x10^-2 rad • 2.58x10^6 km

  17. Angular Speed • Angular Speed – The rate at which a body rotates about an axis, usually expressed in radians per second. (rad/s) • Recall that linear speed describes the distance traveled in a specific time, here it is the angular displacement in a specific time. • It describes how quickly the rotation occurs.

  18. Angular Speed Equation • ω = Average angular speed • Lower case Greek letter called, “omega” • Units: radians per second (rad/s) • Δθ = Angular displacement • Δt = Time interval

  19. Revolutions • Occasionally angular speeds are given in revolutions per unit time. • 1 rev = 2πrad • Examples: • DVD’s • Records • Engines • 2000 rpm (revolutions per minute)

  20. Example Problem • An Indy car can complete 120 laps in 1.5 hours on a circular track. Calculate the average angular speed of the Indy car.

  21. Example Problem Answer • 0.14 rad/s

  22. Angular Acceleration • Angular Acceleration – The time of change of angular speed, expressed in radians per second per second.

  23. Angular Acceleration Equation • α = average angular acceleration • Lower case Greek letter, “alpha” • Units: rad/s² • Δω = Change in angular speed • t = time interval

  24. Example Problem • A yo-yo at rest is sent spinning at an angular speed of 12 rev/s in 0.25 seconds. What is the angular acceleration of the yo-yo?

  25. Example Problem Answer • 48 rev/s² • Converted to radians • 301.6 rad/s²

  26. All Points Have Same Speed and Acceleration • If a point on the rim of a bicycle wheel had a greater angular speed than a point closer to the axel, the shape of the wheel would be changing. • Which can not happen in normal everyday riding. • All points on a rotating object have the same angular speed & acceleration.

  27. Comparing Linear and Angular QuantitiesAngular Substitutes for Linear Quantities

  28. Kinematic Equations Can be Used for Circular Motion • The same equations used for linear motion with constant acceleration, can be used for circular motion with constant angular acceleration. • Change the variables, by using the table in the previous slide and you have the new kinematic equations.

  29. Kinematic Equations for Constant Angular AccelerationAngularLinear

  30. Example Problem • A barrel is given a downhill rolling start of 1.5rad/s at the top of a hill. Assume a constant angular acceleration of 2.9rad/s² • If it takes 11.5s to get to the bottom of the hill, what is the final angular speed of the barrel? • What angular displacement does the barrel experience during the 11.5s ride?

  31. Example Problem Answers • 35 rad/s • 210 rad

More Related