1 / 21

Benefits of integrating meta data into a context model

12.3.2005, Kauai, Hawai'i, USA. Benefits of integrating meta data into a context model. Nicola Hönle, Uwe-Philipp Käppeler, Daniela Nicklas , Thomas Schwarz, Matthias Grossmann. Nexus Center of Excellence 627: Spatial World Models for Mobile Context-Aware Applications.

biana
Download Presentation

Benefits of integrating meta data into a context model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 12.3.2005, Kauai, Hawai'i, USA Benefits of integrating meta data into a context model Nicola Hönle, Uwe-Philipp Käppeler, Daniela Nicklas, Thomas Schwarz, Matthias Grossmann Nexus Center of Excellence 627: Spatial World Models for Mobile Context-Aware Applications University of Stuttgart Germany

  2. meta data What is meta data? application application data meta data = data about (operational) data But: distinction is application-specific!

  3. What is meta data? Some opinions ...

  4. Overview • Meta data in context models • The Nexus Platform (short!) • Integrating meta data in the Nexus Platform • Benefits • Data exchange, query processing • Conclusion

  5. Application State Update(id, value) query (filter) Context Models Applications Context Model Sensors (Modeling) Update(id, value) Physical World

  6. Meta data in context models • Operational data: context information • Meta data: • data to instances of data (not to the schema) • characteristics of data • circumstances of data gathering • Types (not disjoint): • system generated • technical restrictions • technically measurable • authorship, data source • cost • ...

  7. Advantages • Hints about the data quality • reliability, precision, consistency, age, ... • Sensor fusion and data cleansing • on the fly calculation • tailored to application needs • Increases flexibility • integration of context models • different application types

  8. The Nexus Vision: Federated Context Models “Smart Factory” VirtualPostIts Multimodal Navigation City Guide context-aware applications ... global context model Federation data from billions of sensors local context models information spaces ... Digital Libraries WWW

  9. The Nexus Platform • Supports various kinds of context aware applications • Object-based data model (objects and attributes) • Local context models are stored on context servers • Context servers support a given interface • Augmented World Query Language (AWQL): • simple spatial object selection and filtering • Augmented World Modeling Language (AWML) • serialization of context data objects

  10. Area Service Register Federation WWW (ext. data) AWQL/AWML Context- Server Context- Server Context- Server Context- Server Context- Server Sensor Sensor Sensor Context- Server Context- Server GeoDB Nexus Platform Architecture Application Application Application federated global context model local context models  Why different context servers? See our PerCom´05 paper.

  11. Benefits of integrating meta data • Finding resources: • meta data about local context models (Area Service Register) • Better data selection: • better specifying kinds of context data (Application, Federation) • Trust and data quality: • optimize results, favor certain data providers (Application, Federation) • Sensor fusion: • higher level sensor fusion across several data providers (Context Servers, Federation) • Implicit usage in data processing: • application profiles simplify application queries (Federation)

  12. meta data about data objects meta data about attribute values accuracy: ±5 Multiple attribute instances measurementTime: 08:00:00 accuracy: ±1 value: 25.0 measurementTime: 08:30:00 accuracy: ±0.5 author: Alice gatheringTime: 2004-08-08 Which meta data do we use? meta data about data providers AreaServiceRegister object identifier value: ID1234 register (AugmentedArea, ObjectTypes) type value: TemperatureSensor position ContextServer value: 49N 9E temperature value: 23.0 local context model

  13. Augmented World Modeling Language (AWML) awml nexusobject attribute value attribute value nexusobject nexusobject nexusobject

  14. AWML: data exchange with meta data <awml> <nexusobject> <NOL> <value> ID1234 </value> </NOL> <type> <value> TemperatureSensor </value> </type> <position> <value> 49N 9E </value> <meta> <accuracy> 5 </accuracy> </meta> </position> ... <meta> <author> Alice </author> <gatheringTime> 2004-08-08 </gatheringTime> </meta> </nexusobject> <nexusobject> ... </nexusobject> </awml> Attribute value with meta data Object meta data

  15. AWML: data exchange with meta data <awml> <nexusobject> <NOL> <value> ID1234 </value> </NOL> ... <temperature> <value> 23.0 </value> <meta> <measurementTime> 08:00:00 </measurementTime> <accuracy> 1 </accuracy> </meta> </temperature> <temperature> <value> 23.0 </value> <meta> <measurementTime> 08:30:00 </measurementTime> <accuracy> 0.5 </accuracy> </meta> </temperature> ... </nexusobject> ... </awml> Multiple attribute instances

  16. Augmented World Query Language (AWQL) awql restriction equal, less, greater and, or, not spatial: within, overlap temporal: before, after, ... filter: include or exclude attribute list

  17. Step 1: provider selection (restrictions on type and position)  context server list Step 2: object selection (restrictions)  result set AWQL: query processing <awql> <restriction> <and> <equal> <target> type.value </target> <referenceValue> TemperaturSensor </referenceValue> </equal> <within> <target> pos.value </target> <referenceValue> SomeArea </referenceValue> </within> <less> <target> temperature.value </target> <referenceValue> 24.0 </referenceValue> </less> <temporalAfter> <target> temperature.meta.measurementTime </target> <referenceValue> 08:12:00 </referenceValue> </temporalAfter> </and> </restriction> <include> ... </include> <awql>

  18. Step 3: Attribute instance selection (include)  return set AWQL: query processing (cont.) <awql> <restriction> ... </restriction> <include> <target> NOL.value </target> </include> <include> <target> temperature </target> <include> <target> value </target> <target> meta.accuracy </target> </include> <restriction> <temporalAfter> <target> meta.measurementTime </target> <referenceValue> 08:12:00 </referenceValue> </temporalAfter> </restriction> </include> </awql>

  19. Implementation Issues • XML: optional elements, multi-elements • Java: generic result set classes (multiple attribute instances, ...) • relational DBMS: decomposed storage model

  20. Conclusion • Extension of data model (AWM), serialization (AWQL) and query language (AWQL) to cope with meta data • Current usage: • selection of data sources (providers) • selection of objects • Future work: further usage of meta data for • sensor fusion algorithms • selection of providers based on trust metrics • assessment of data quality • application profiles • Important question: how trustworthy are the meta data?

  21. Mahalo! Questions?

More Related