1 / 48

Computer Networks with Internet Technology William Stallings

Computer Networks with Internet Technology William Stallings. Chapter 13 Wide Area Networks. Frame Relay Networks. Designed to eliminate much of the overhead in X.25 Call control signaling on separate logical connection from user data

bijan
Download Presentation

Computer Networks with Internet Technology William Stallings

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer Networks with Internet TechnologyWilliam Stallings Chapter 13 Wide Area Networks

  2. Frame Relay Networks • Designed to eliminate much of the overhead in X.25 • Call control signaling on separate logical connection from user data • Multiplexing/switching of logical connections at layer 2 (not layer 3) • No hop-by-hop flow control and error control • Throughput an order of magnitude higher than X.25

  3. Frame Relay Architecture • X.25 has 3 layers: physical, link, network • Frame Relay has 2 layers: physical and data link (or LAPF) • LAPF core: minimal data link control • Preservation of order for frames • Small probability of frame loss • LAPF control: additional data link or network layer end-to-end functions

  4. Figure 13.1 Frame Relay User-Network Interface Protocol Architecture

  5. LAPF Core • Frame delimiting, alignment and transparency • Frame multiplexing/demultiplexing • Inspection of frame for length constraints • Detection of transmission errors • Congestion control

  6. Figure 13.2 LAPF-core Formats

  7. Frame Relay User Data Transfer • No control field, which is normally used for: • Identify frame type (data or control) • Sequence numbers • Implication: • Connection setup/teardown carried on separate channel • Cannot do flow and error control

  8. Asynchronous Transfer ModeATM • Similarities between ATM and packet switching • Transfer of data in discrete chunks • Multiple logical connections over single physical interface • In ATM flow on each logical connection is in fixed sized packets called cells • Minimal error and flow control • Reduced overhead • Data rates (physical layer) 25.6Mbps to 622.08Mbps

  9. ATM Logical Connections • Virtual channel connections (VCC) • Analogous to virtual circuit in X.25 • Basic unit of switching • Between two end users • Full duplex • Fixed size cells • Data, user-network exchange (control) and network-network exchange (network management and routing) • Virtual path connection (VPC) • Bundle of VCC with same end points

  10. Figure 13.3ATM Connection Relationship

  11. Advantages of Virtual Paths • Simplified network architecture • Increased network performance and reliability • Reduced processing • Short connection setup time • Enhanced network services

  12. VP/VC Characteristics • Quality of service • Switched and semi-permanent channel connections • Call sequence integrity • Traffic parameter negotiation and usage monitoring • VPC only • Virtual channel identifier restriction within VPC

  13. Control Signaling - VCC • Done on separate connection • Semi-permanent VCC • Meta-signaling channel • Used as permanent control signal channel • User to network signaling virtual channel • For control signaling • Used to set up VCCs to carry user data • User to user signaling virtual channel • Within pre-established VPC • Used by two end users without network intervention to establish and release user to user VCC

  14. Control Signaling - VPC • Semi-permanent • Customer controlled • Network controlled

  15. ATM Cells • Fixed size • 5 octet header • 48 octet information field • Small cells reduce queuing delay for high priority cells • Small cells can be switched more efficiently • Easier to implement switching of small cells in hardware

  16. Figure 13.4 ATM Cell Format

  17. Header Format • Generic flow control • Only at user to network interface • Controls flow only at this point • Virtual path identifier • Virtual channel identifier • Payload type • e.g. user info or network management • Cell loss priority • Header error control

  18. Header Error Control • 8 bit error control field • Calculated on remaining 32 bits of header • Allows some error correction

  19. Generic Flow Control (GFC) • Control traffic flow at user to network interface (UNI) to alleviate short term overload • Two sets of procedures • Uncontrolled transmission • Controlled transmission • Every connection either subject to flow control or not • Subject to flow control • May be one group (A) default • May be two groups (A and B) • Flow control is from subscriber to network • Controlled by network side

  20. Single Group of Connections (1) • Terminal equipment (TE) initializes two variables • TRANSMIT flag to 1 • GO_CNTR (credit counter) to 0 • If TRANSMIT=1 cells on uncontrolled connection may be sent any time • If TRANSMIT=0 no cells may be sent (on controlled or uncontrolled connections) • If HALT received, TRANSMIT set to 0 and remains until NO_HALT

  21. Single Group of Connections (2) • If TRANSMIT=1 and no cell to transmit on any uncontrolled connection: • If GO_CNTR>0, TE may send cell on controlled connection • Cell marked as being on controlled connection • GO_CNTR decremented • If GO_CNTR=0, TE may not send on controlled connection • TE sets GO_CNTR to GO_VALUE upon receiving SET signal • Null signal has no effect

  22. Use of HALT • To limit effective data rate on ATM • Should be cyclic • To reduce data rate by half, HALT issued to be in effect 50% of time • Done on regular pattern over lifetime of connection

  23. ATM Service Categories • Real time • Constant bit rate (CBR) • Real time variable bit rate (rt-VBR) • Non-real time • Non-real time variable bit rate (nrt-VBR) • Available bit rate (ABR) • Unspecified bit rate (UBR) • Guaranteed frame rate (GFR)

  24. Real Time Services • Amount of delay • Variation of delay (jitter)

  25. CBR • Fixed data rate continuously available • Tight upper bound on delay • Uncompressed audio and video • Video conferencing • Interactive audio • A/V distribution and retrieval

  26. rt-VBR • Time sensitive application • Tightly constrained delay and delay variation • rt-VBR applications transmit at a rate that varies with time • e.g. compressed video • Produces varying sized image frames • Original (uncompressed) frame rate constant • So compressed data rate varies • Can statistically multiplex connections

  27. nrt-VBR • May be able to characterize expected traffic flow • Improve QoS in loss and delay • End system specifies: • Peak cell rate • Sustainable or average rate • Measure of how bursty traffic is • e.g. Airline reservations, banking transactions

  28. UBR • May be additional capacity over and above that used by CBR and VBR traffic • Not all resources dedicated • Bursty nature of VBR • For application that can tolerate some cell loss or variable delays • e.g. TCP based traffic • Cells forwarded on FIFO basis • Best efforts service

  29. ABR • Application specifies peak cell rate (PCR) and minimum cell rate (MCR) • Resources allocated to give at least MCR • Spare capacity shared among all ARB sources • e.g. LAN interconnection

  30. Guaranteed Frame Rate (GFR) • Designed to support IP backbone subnetworks • Better service than UBR for frame based traffic • Including IP and Ethernet • Optimize handling of frame based traffic passing from LAN through router to ATM backbone • Used by enterprise, carrier and ISP networks • Consolidation and extension of IP over WAN • ABR difficult to implement between routers over ATM network • GFR better alternative for traffic originating on Ethernet • Network aware of frame/packet boundaries • When congested, all cells from frame discarded • Guaranteed minimum capacity • Additional frames carried of not congested

  31. Cellular Wireless Networks • Underlying technology for mobile phones, personal communication systems, wireless networking etc. • Developed for mobile radio telephone • Replace high power transmitter/receiver systems • Typical support for 25 channels over 80km • Use lower power, shorter range, more transmitters

  32. Cellular Network Organization • Multiple low power transmitters • 100w or less • Area divided into cells • Each with own antenna • Each with own range of frequencies • Served by base station • Transmitter, receiver, control unit • Adjacent cells on different frequencies to avoid crosstalk

  33. Shape of Cells • Square • Width d cell has four neighbors at distance d and four at distance d • Better if all adjacent antennas equidistant • Simplifies choosing and switching to new antenna • Hexagon • Provides equidistant antennas • Radius defined as radius of circum-circle • Distance from center to vertex equals length of side • Distance between centers of cells radius R is R • Not always precise hexagons • Topographical limitations • Local signal propagation conditions • Location of antennas

  34. Figure 13.5 Cellular Geometries

  35. Frequency Reuse • Power of base transceiver controlled • Allow communications within cell on given frequency • Limit escaping power to adjacent cells • Allow re-use of frequencies in nearby cells • Use same frequency for multiple conversations • 10 – 50 frequencies per cell • E.g. • N cells all using same number of frequencies • K total number of frequencies used in systems • Each cell has K/N frequencies • Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57 frequencies per cell on average

  36. Characterizing Frequency Reuse • D = minimum distance between centers of cells that use the same band of frequencies (called cochannels) • R = radius of a cell • d = distance between centers of adjacent cells (d = R) • N = number of cells in repetitious pattern • Reuse factor • Each cell in pattern uses unique band of frequencies • Hexagonal cell pattern, following values of N possible •  N = I2 + J2 + (I x J), I, J = 0, 1, 2, 3, … •  Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, … • D/R= • D/d =

  37. Figure 13.6 Frequency Reuse Patterns

  38. Increasing Capacity (1) • Add new channels • Not all channels used to start with • Frequency borrowing • Taken from adjacent cells by congested cells • Or assign frequencies dynamically • Cell splitting • Non-uniform distribution of topography and traffic • Smaller cells in high use areas • Original cells 6.5 – 13 km • 1.5 km limit in general • More frequent handoff • More base stations

  39. Increasing Capacity (2) • Cell Sectoring • Cell divided into wedge shaped sectors • 3 – 6 sectors per cell • Each with own channel set • Subsets of cell’s channels • Directional antennas • Microcells • Move antennas from tops of hills and large buildings to tops of small buildings and sides of large buildings • Even lamp posts • Form microcells • Reduced power • Good for city streets, along roads and inside large buildings

  40. Figure 13.7 Frequency Reuse Example

  41. Operation of Cellular Systems • Base station (BS) at center of each cell • Antenna, controller, transceivers • Controller handles call process • Number of mobile units may in use at a time • BS connected to mobile telecommunications switching office (MTSO) • One MTSO serves multiple BS • MTSO to BS link by wire or wireless • MTSO: • Connects calls between mobile units and from mobile to fixed telecommunications network • Assigns voice channel • Performs handoffs • Monitors calls (billing) • Fully automated

  42. Figure 13.8 Overview of Cellular System

  43. Channels • Control channels • Setting up and maintaining calls • Establish relationship between mobile unit and nearest BS • Traffic channels • Carry voice and data

  44. Typical Call in Single MTSO Area (1) • Mobile unit initialization • Scan and select strongest set up control channel • Automatically selected BS antenna of cell • Usually but not always nearest (propagation anomalies) • Handshake to identify user and register location • Scan repeated to allow for movement • Change of cell • Mobile unit monitors for pages (see below) • Mobile originated call • Check set up channel is free • Monitor forward channel (from BS) and wait for idle • Send number on pre-selected channel • Paging • MTSO attempts to connect to mobile unit • Paging message sent to BSs depending on called mobile number • Paging signal transmitted on set up channel

  45. Typical Call in Single MTSO Area (2) • Call accepted • Mobile unit recognizes number on set up channel • Responds to BS which sends response to MTSO • MTSO sets up circuit between calling and called BSs • MTSO selects available traffic channel within cells and notifies BSs • BSs notify mobile unit of channel • Ongoing call • Voice/data exchanged through respective BSs and MTSO • Handoff • Mobile unit moves out of range of cell into range of another cell • Traffic channel changes to one assigned to new BS • Without interruption of service to user

  46. Figure 13.9 Example of Mobile Cellular Call

  47. Other Functions • Call blocking • During mobile-initiated call stage, if all traffic channels busy, mobile tries again • After number of fails, busy tone returned • Call termination • User hangs up • MTSO informed • Traffic channels at two BSs released • Call drop • BS cannot maintain required signal strength • Traffic channel dropped and MTSO informed • Calls to/from fixed and remote mobile subscriber • MTSO connects to PSTN • MTSO can connect mobile user and fixed subscriber via PSTN • MTSO can connect to remote MTSO via PSTN or via dedicated lines • Can connect mobile user in its area and remote mobile user

  48. Required Reading • Stallings chapter 13

More Related