1 / 10

Color-Attributes-Related Image Retrieval

Color-Attributes-Related Image Retrieval. Student: Kylie Gorman Mentor: Yang Zhang. Problem and Solution. Content based image retrieval is a common problem in computer vision Object-related image retrieval is a popular area related to this issue

bing
Download Presentation

Color-Attributes-Related Image Retrieval

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Color-Attributes-Related Image Retrieval Student: Kylie Gorman Mentor: Yang Zhang

  2. Problem and Solution • Content based image retrieval is a common problem in computer vision • Object-related image retrieval is a popular area related to this issue • Attributed-related image retrieval is a possible solution • Enable a person to retrieve an image based on attributes of an object • Some people have tried to use color as a starting point, but this is still a very novel concept

  3. Related Papers • Van De Weijer, Joost, et al. "Learning color names for real-world applications."Image Processing, IEEE Transactions on 18.7 (2009): 1512-1523. • Keen,Noah. “Color Moments”(2005). • Shahbaz Khan, F., et al. "Color attributes for object detection." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

  4. Background • Color moments: measures that differentiate images based on color • 3 moments per box based on mean, standard deviation, and skewness • Higher difference of color moments means less similar than two images with lower DOM value • Learning color names from real-world images is more useful than chip-based color mapping • Using color attributes in conjunction with object detection provides more accurate results

  5. Beginning Code • Separates an HSV image into boxes and calculates the color moments of each box • One moment for mean, standard deviation, and skewness • My contribution: • Function for HSV images should also take in corresponding binary images • Break up binary image into corresponding blocks of HSV image • Locate parts of image that contain desired object • Concatenate these boxes into a single matrix to isolate object and only take the boxes from HSV image that contain the object

  6. Further Contribution • Use Google images and calculate feature matrix of HSV image • Concatenate all of the matrices calculated and use PCA (Principal Component Analysis) function in MATLAB • PCA can be used for image compression • Store result and multiply by each individual feature matrix

  7. Current Contribution • Mixture Model: a probabilistic model for representing the presence of subpopulations within an overall population • Gaussian Mixture Model: a mixture of K multivariate Gaussian distributions. • GMM clusters the existing points • [means, covariances, priors] = vl_gmm(data, numClusters);

  8. Fisher Vector • Since all of the data consists of real-world images, all of the images have different number of vectors • Fisher vector will allows us to quantize the vectors • Similar to Bag of Words: will compare local descriptors to a dictionary obtained with GMM • Different than Bag of Words: instead of storing visual word occurrences, stores difference between dictionary elements and pooled local features • Compute Fisher Vector encoding with VLFEAT MATLAB interface • encoding = vl_fisher(datatoBeEncoded, means, covariances, priors);

  9. Current Progress and Future Plans • Read related papers and understand background concepts • Validate current code with small data set of real-world images • Add more features to the system to improve its performance • Apply code to larger data set • Collecting Dataset: There are not any existing color image datasets on the Internet. Use automatic image collecting tool to create our own color object dataset. • Also include object detection • Possible Bonus: Implement novel ideas about general attribute image retrieval system. Determine if it is effective or not.

More Related