1 / 12

Lab 6: Week 1 Quadrature Amplitude Modulation (QAM) Transmitter

Yeong Choo and Sam Kanawati Dept. of Electrical and Computer Engineering The University of Texas at Austin. Lab 6: Week 1 Quadrature Amplitude Modulation (QAM) Transmitter. Introduction. Digital Pulse Amplitude Modulation (PAM) Modulates digital information onto amplitude of pulse

blackk
Download Presentation

Lab 6: Week 1 Quadrature Amplitude Modulation (QAM) Transmitter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Yeong Choo and Sam Kanawati Dept. of Electrical and Computer Engineering The University of Texas at Austin Lab 6: Week 1Quadrature Amplitude Modulation (QAM) Transmitter

  2. Introduction • Digital Pulse Amplitude Modulation (PAM) Modulates digital information onto amplitude of pulse May be later upconverted (e.g. to radio frequency) • Digital Quadrature Amplitude Modulation (QAM) Two-dimensional extension of digital PAM Baseband signal requires sinusoidal amplitude modulation May be later upconverted (e.g. to radio frequency) • Digital QAM modulates digital information onto pulses that are modulated onto Amplitudes of a sine and a cosine, or equivalently Amplitude and phase of single sinusoid

  3. Review Y1(w) ½X1(w + wc) ½X1(w - wc) X1(w) ½ 1 w -wc - w1 -wc + w1 wc - w1 wc + w1 0 -wc wc w -w1 w1 0 Amplitude Modulation by Cosine • y1(t) = x1(t) cos(wct) Assume x1(t) is an ideal lowpass signal with bandwidth w1 Assume w1 << wc Y1(w) is real-valued if X1(w) is real-valued • Demodulation: modulation then lowpass filtering Baseband signal Upconverted signal

  4. Review Y2(w) j ½X2(w + wc) -j ½X2(w - wc) X2(w) j ½ 1 wc wc – w2 wc + w2 w -wc – w2 -wc + w2 -wc w -j ½ -w2 w2 0 Amplitude Modulation by Sine • y2(t) = x2(t) sin(wct) Assume x2(t) is an ideal lowpass signal with bandwidth w2 Assume w2 << wc Y2(w) is imaginary-valued if X2(w) is real-valued • Demodulation: modulation then lowpass filtering Baseband signal Upconverted signal

  5. Q d -d d I -d 4-level QAM Constellation Baseband Digital QAM Transmitter • Continuous-time filtering and upconversion Impulsemodulator gT(t) i[n] Index Pulse shapers(FIR filters) s(t) Bits Delay Serial/parallelconverter Map to 2-D constellation Local Oscillator + J 1 90o q[n] Impulsemodulator gT(t) Delay matches delay through 90o phase shifter Delay required but often omitted in diagrams

  6. Baseband Digital QAM Transmitter Impulsemodulator gT(t) i[n] Index Pulse shapers(FIR filters) s(t) Bits Delay Serial/parallelconverter Map to 2-D constellation Local Oscillator + J 1 90o q[n] Impulsemodulator gT(t) 100% discrete timeuntil D/A converter i[n] L gT[m] s[m] cos(0m) Bits Index s(t) Serial/parallelconverter Map to 2-D constellation Pulse shapers(FIR filters) + sin(0 m) D/A J 1 L samples/symbol (upsampling factor) L gT[m] q[n]

  7. 3 d d -d -3 d Q d -d d I -d 4-level QAM Constellation Average Power Analysis • Assume each symbol is equally likely • Assume energy in pulse shape is 1 • 4-PAM constellation Amplitudes are in set { -3d, -d, d, 3d } Total power 9 d2 + d2 + d2 + 9 d2 = 20 d2 Average power per symbol 5 d2 Peak Power per symbol 9 d2 • 4-QAM constellation points Points are in set { -d – jd, -d + jd, d + jd, d – jd } Total power 2d2 + 2d2 + 2d2 + 2d2 = 8d2 Average power per symbol 2d2 Peak power per symbol 2 d2 4-level PAM Constellation

  8. The 16-Point Rectangular QAM Constellation

  9. Q d -d d I -d 4-level QAM Constellation Performance Analysis of QAM • If we sample matched filter outputs at correct time instances, nTsym, without any ISI, received signal • Transmitted signal where i,k { -1, 0, 1, 2 } for 16-QAM • Noise For error probability analysis, assume noise terms independent and each term is Gaussian random variable ~ N(0; 2/Tsym)

  10. 4-PAM vs 4-QAM Source: Appendix P in the Course Reader (EE445S)

  11. 4-PAM vs 4-QAM Perspective 1: Take a vertical slice (at fixed SNR = 14dB) Source: Appendix P in the Course Reader (EE445S)

  12. 4-PAM vs 4-QAM

More Related