1 / 23

Process Algebra (2IF45) Probabilistic extension: semantics Parallel composition

Process Algebra (2IF45) Probabilistic extension: semantics Parallel composition. Dr. Suzana Andova. Probabilistic LTS. Basic ingredients of a PLTS: states non-detereministic states set N probabilistic states set P transitions

blade
Download Presentation

Process Algebra (2IF45) Probabilistic extension: semantics Parallel composition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Process Algebra (2IF45)Probabilistic extension: semanticsParallel composition Dr. Suzana Andova

  2. Probabilistic LTS • Basic ingredients of a PLTS: • states • non-detereministic states set N • probabilistic states set P • transitions • action transitions labelled with actions and t P • probabilistic transitions labelled with probabilities and t N • For a probabilistic state s, •   = 1 a s  t  s  t  s  t Process Algebra (2IF45)

  3. Equational theory. Language • Specify processes that can execute certain actions from a given set A • The language of the Probabilistic Basic Process Algebra, namely, the operators in the signature • 0 deadlock constant (inaction) • 1 successful termination • a._ action prefix for a in A • + non-deterministic choice •  probabilistic choice for   (0,1) Process Algebra (2IF45)

  4. Axioms of PBPA(A) PBPA(A) Signature: 0, a._ , _+_ ,  • (A1) x+ y = y+x • (A2) (x+y) + z = x+ (y + z) • (A3) x + x = x • but (AA3) a.x+a.x = a.x • (A4) x+ 0 = x Process Algebra (2IF45)

  5. Axioms of PBPA(A) PBPA(A) Signature: 0, a._ , _+_ ,  • (PA1) x  y = y 1- x • (PA2) x(y  z) = (xy)  z • where = /( + - ) and  =  + -  • (PA3) x  x = x • (PA4) (x  y) + z = (x + z)  (y + z) Process Algebra (2IF45)

  6. Probabilistic LTS 1 2/3 1/3 1 2 3 a b a b a b b 4 5 6 7 8 1 1 1 1 2/3 1 1 1/3 9 10 12 11 13 c c c c c c c c Process Algebra (2IF45)

  7. SOS rules for PBPA(A) • Process terms in the language of • the Probabilistic Basic Process Algebra, • 0 deadlock constant (inaction) • 1 successful termination • a._ action prefix for a in A • + non-deterministic choice •  probabilistic choice for   (0,1) a.0 1 a.0? a 0? Process Algebra (2IF45)

  8. SOS rules for PBPA(A) • Process terms in the language of • the Probabilistic Basic Process Algebra, • 0 deadlock constant (inaction) • 1 successful termination • a._ action prefix for a in A • + non-deterministic choice •  probabilistic choice for   (0,1) a.0 1 a.0 a 0 Process Algebra (2IF45)

  9. SOS rules for PBPA(A) • Signature: 0, a._ , _+_,  • Set of closed terms C(PBPA(A)) • Behaviour expressed by • action transitions _  _ for a in A • probabilistic transitions _ _ for  (0,1] • Behavioural equivalence is bisimilarity a  Deduction rules 1 a.x  a.x a a.x x Process Algebra (2IF45)

  10. SOS rules for PBPA(A) a.0 b.0 a.0 1/2 b.0 1 1/2 1 1/2 1/2 = b b a a Process Algebra (2IF45)

  11. SOS rules for PBPA(A) a.0 b.0 a.0 1/2 b.0 1 1/2 1 1/2 1/2 = b b a a  y  y’ x  y  y’ Deduction rules  x  x’ x  y  x’ (1-) 1  a.x  a.x a a.x x Process Algebra (2IF45)

  12. SOS rules for PBPA(A) 1/6 1/3 1/3 1/2 1/3 1/2 2/3 1/6 + = d c b a b c d a b d a c

  13. SOS rules for PBPA(A)  y  y’ x  y  y’ 1/6 1/3 Deduction rules 1/3  1/2 1/3 1/2 x  x’ x  y  x’ 2/3 1/6 (1-) 1  a.x  a.x + = x  x’, y  y’ x +y  x’ + y’ d c b a a.x x a b c d a   b d a c 

  14. SOS for action transitions • Deduction rules for action transitions and termination a x  x’ x + y  x’ a y  y’ x + y  y’ a a.x x a a x (x + y)  y (x + y)  1 Process Algebra (2IF45)

  15. Extending the language with parallel composition – Probabilistic TCP(A, ) • Specify processes that can execute certain actions from a given set A • The language of the Probabilistic Theory of Communicating Processes, namely, the operators in the signature • 0 deadlock constant (inaction) • 1 successful termination • a._ action prefix for a in A • + non-deterministic choice • probabilistic choice for   (0,1) • communication function (_,_) • parallel composition _ || _ • communication composition _ | _ Process Algebra (2IF45)

  16. SOS semantics of PTCP(A, ) 1/6 1/6 1/3 1/3 1/3 1/2 2/3 1/2 || = c c b d a b d a e b d a c 1 1 1 1 1 1 1 c a b c d b d a where a and c communicate in e, and no other communication is defined (in this examples) Deduction rules     x  x’, y  y’ x | y  x’ | y’ x  x’ H(x)  H(x’)  x  x’, y  y’ x || y  x’|| y’   

  17. SOS semantics of PTCP(A, ) • Deduction rules for action transitions and termination a a y  y’ x || y  x || y’ x  x’ x || y  x’ || y x y x | y x y x || y a a a b x  x’ y  y’, (a,b) = c x || y  x’ || y’ a b x  x’ y  y’, (a,b) = c x | y  x’ || y’ c c a x  x’ , aH H(x)  H(x’) a

  18. Axioms (not seen yet) of TCP(A, ) • x|| y = x╙y + y╙x + x | y, only if x=x+x and y=y+y • x || (y  z) = (x || y)  (x || z) • (x  y) || z = (x || z)  (y || z) • x | (y  z) = (x | y)  (x | z) • (x  y) | z = (x | z)  (y | z) • H(x  y) = H(x) H(y) • x ╙ (y  z) = (x ╙ y)  (x ╙ z) • (x  y) ╙ z = (x ╙ z)  (y ╙ z) Process Algebra (2IF45)

  19. Exercises • Consider process terms p = a.0 + a.0, q = a.0 1/3 b.0, r = c.(d.0 1/2 b.0). • Draw the PLTSs of p, q and r using the SOS semantic rules. Use the rules compute the PLTS of H(p || q || r) if (b,c) = e and H={b,c} • Using the axioms derive a PBPA(A) process term t such that • PTCP(A, )├ H(p || q || r) = t, if (b,c) = e and H={b,c}. • Draw the PLTS of t and establish a probabilistic bisimulation relation between PLTS of t and PLTS of H(p || q || r). Process Algebra (2IF45)

  20. Unreliable communication – nondeterministic spec 2 1 3 S R S = s1(x).Sx Sx = i.s2(x).1 + i.s2(err).Sx R = r2(x).r3(x).1 + r2(err).R Sys Sys = H(S || R) Sys =s1(x). H(Sx || R) H(Sx || R) = i.c2(x).s3(x).1 +i. c2(err). H(Sx || R) s1(x) i i c2(err) c2(x) s3(x) Process Algebra (2IF45)

  21. Unreliable communication – probabilistic spec 2 1 3 S R Specification of components: PS = s1(x).PSx PSx = s2(x).1 9/10 s2(err).PSx R = r2(x).r3(x).1 + r2(err).R PSys 1 s1(x) Specification of the whole system, derived from spec. above PSys = H(PS || R) PSys =s1(x). H(PSx || R) H(PSx || R) = c2(x).s3(x).1 9/10 c2(err). H(PSx || R) 1/10 9/10 c2(err) c2(x) 1 s3(x) Process Algebra (2IF45)

  22. Unreliable communication – probabilistic spec • Benefits of probabilistic wrt nondeterministic specification: • - no fairness assumption needed • performance analysis is possible , for instance for this example we can compute the average number of the message x needs to be sent by S in order to be received by R; This number, of course, depends on the probability by which the message is correctly sent. Thus, for exaple, we compute, using probability theory techniques, that : • for 1/10 vs. 9/10 in average a message needs to be sent 1.2 times • for ½ vs. ½ in average a message needs to be sent 2 time PSys 1 s1(x) 1/10 9/10 c2(err) c2(x) 1 s3(x) Process Algebra (2IF45)

  23. ABP with unreliable channels 2 3 1 K 4 S R 5 6 L S = S0  S1  S Sn = d r1(d).Snd Snd = s2(dn). Tnd Tnd = r6(1-n).Snd + s6(err).Snd + r6(n).1 R = R1  R0 R Rn = r3(err).s5(n).Rn + d,n r3(dn).s5(n).Rn + d,n r3(d(1-n)).s4(d).s5(1-n).1 K = d,n r2(dn).(i.s3(dn).K + i.s3(err).K) L = n r5(n).(i.s6(n).K + i.s6(err).L) Specify K and L with probabilistic choice operator. Derive the spec. of the whole system Process Algebra (2IF45)

More Related