380 likes | 542 Views
Review of Unit Root Testing. D. A. Dickey North Carolina State University (Previously presented at Purdue Econ Dept.). Nonstationary Forecast. Stationary Forecast. ”Trend Stationary” Forecast. Nonstationary Forecast. Y t - m = r ( Y t-1 -m) + e t Y t = m (1- r) + r Y t-1 + e t
E N D
Review of Unit Root Testing D. A. Dickey North Carolina State University (Previously presented at Purdue Econ Dept.)
Nonstationary Forecast Stationary Forecast
”Trend Stationary” Forecast Nonstationary Forecast
Yt -m = r (Yt-1-m) + et Yt =m (1- r) + rYt-1 + et DYt=m (1- r) + (r-1)Yt-1 + et DYt=(r-1)(Yt-1- m) + et whereDYt is Yt-Yt-1 • Autoregressive Model • AR(1) • AR(p) Yt -m = a1(Yt-1-m) + a2(Yt-2-m) + ...+ ap(Yt-1-m) + et
AR(1) Stationary |r| < 1 • OLS Regression Estimators – Stationary case • Mann and Wald (1940’s) : For |r| < 1 More exciting algebra coming up ……
AR(1) Stationary |r| < 1 • OLS Regression Estimators – Stationary case • Same limit if sample mean replaced by m • (2) AR(p) Multivariate Normal Limits
|r| < 1 • Yt-m = r(Yt-1-m) + et=r(r(Yt-2-m)+ et-1) + et= ... = et + ret-1+r2et-2+ … +rk-1et-k+1+ rk (Yt-k-m) . • Yt=m + (converges for |r| < 1) • Var{Yt } = s2/(1-r2) • r = 1 • But if r=1, then Yt= Yt-1+ et, a random walk. • Yt= Y0+ et + et-1 + et-2 + … + e1 • Var{Yt- Y0}= ts2 • E{Yt} = E{Y0}
AR(1) |r| < 1 • E{Yt} = m • Var{Yt } is constant • Forecast of Yt+L converges to m (exponentially fast) • Forecast error variance is bounded • AR(1)r = 1 • Yt= Yt-1+ et • E{Yt} = E{Y0} • Var{Yt} grows without bound • Forecast not mean reverting
E = MC2 r = ?
Nonstationary (r=1) cases: Case 1: m known (=0) Regression Estimators (Yt on Yt-1noint ) /n n /n2
r=1 Nonstationary Recall stationary results: Note: all results independent of s 2
Where are my clothes? H0:r=1 H1:|r|<1 ?
DF Distribution ?? Numerator: e1 e2 e3 … en e1 e12e1e2 e1e3 … e1en e2 e22e2e3 … e2en e3 e32 … e3en : : en en2 : Y1e2 Y2e3 … Yn-1en
Denominator For n Observations: (eigenvalues are reciprocals of each other)
Results: eTAne = n-2eTAne = Graph of gi,502and limit : SAS program: Simulate_Tau.sas
Histograms for n=50: -1.96 -8.1
Extension 1: Add a mean (intercept) New quadratic forms. New distributions Estimator independent of Y0
Extension 2: Add linear trend on 1, t, Yt-1 annihilates Y0 , bt Regress Yt New quadratic forms. New distributions
The 6 Distributions coefficient n(rj-1) -8.1 -14.1 -21.8 0 t test t - 1.96 -1.95 -2.93 -3.50 f(t) = 0 mean trend
t percentiles, n=50 t percentiles, limit
Higher Order Models stationary: “characteristic eqn.” roots 0.5, 0.8( < 1) note: (1-.5)(1-.8) = -0.1 nonstationary
Higher Order Models- General AR(2) roots: (m - a )( m - b ) = m2 - ( a + b )m + ab AR(2): ( Yt- m ) = ( a + b ) ( Yt-1- m ) - ab ( Yt-2- m ) + et (0 if unit root) nonstationary t test same as AR(1). Coefficient requires modification t test N(0,1) !!
Tests These coefficients normal! | | Regress: on (1, t) Yt-1 ( “ADF” test ) r-1 ( t ) • augmenting affects limit distn. • “ does not affect “ “
Silver example: Nonstationary Forecast Stationary Forecast Demo: Rho_2.sas
Is AR(2) sufficient ? test vs. AR(5). • proc reg; model D = Y1 D1-D4;test D2=0, D3=0, D4=0; Source df Coeff. t Pr>|t| Intercept 1 121.03 3.09 0.0035 Yt-1 1 -0.188 -3.07 0.0038 Yt-1-Yt-2 1 0.639 4.59 0.0001 Yt-2-Yt-3 1 0.050 0.30 0.7691 Yt-3-Yt-4 1 0.000 0.00 0.9985 Yt-4-Yt-5 1 0.263 1.72 0.0924 F413 = 1152 / 871 = 1.32 Pr>F = 0.2803 X
Fit AR(2) and do unit root test Method 1: OLS output and tabled critical value (-2.86) proc reg; model D = Y1 D1; • Source df Coeff. t Pr>|t| • Intercept 1 75.581 2.762 0.0082 X • Yt-1 1 -0.117 -2.776 0.0038 X • Yt-1-Yt-2 1 0.671 6.211 0.0001 Method 2: OLS output and tabled critical values proc arima; identify var=silver stationarity = (dickey=(1)); Augmented Dickey-Fuller Unit Root Tests Type Lags t Prob<t Zero Mean 1 -0.2803 0.5800 Single Mean 1 -2.77570.0689 Trend 1 -2.6294 0.2697
? First part ACF IACF PACF
Full data ACF IACF PACF
Amazon.com Stock ln(Closing Price) Levels Differences Demo: Rho_3.sas
Levels Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr < Tau Zero Mean 2 1.85 0.9849 Single Mean 2 -0.90 0.7882 Trend 2 -2.83 0.1866 Differences Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr<Tau Zero Mean 1 -14.90 <.0001 Single Mean 1 -15.15 <.0001 Trend 1 -15.14 <.0001
Are differences white noise (p=q=0) ? Autocorrelation Check for White Noise To Chi- Pr > Lag Square DF ChiSq -------------Autocorrelations------------- 6 3.22 6 0.7803 0.047 0.021 0.046 -0.036 -0.004 0.014 12 6.24 12 0.9037 -0.062 -0.032 -0.024 0.006 0.004 0.019 18 9.77 18 0.9391 0.042 0.015 -0.042 0.023 0.020 0.046 24 12.28 24 0.9766 -0.010 -0.005 -0.035 -0.045 0.008 -0.035
Amazon.com Stock Volume Levels Differences
Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr < Tau Zero Mean 4 0.07 0.7063 Single Mean 4 -2.05 0.2638 Trend 4 -5.76 <.0001 Maximum Likelihood Estimation Approx Parameter Estimate t Value Pr > |t| Lag Variable MU -71.81516 -8.83 <.0001 0 volume MA1,1 0.26125 4.53 <.0001 2 volume AR1,1 0.63705 14.35 <.0001 1 volume AR1,2 0.22655 4.32 <.0001 2 volume NUM1 0.0061294 10.56 <.0001 0 date To Chi- Pr > Lag Square DF ChiSq -------------Autocorrelations------------- 6 0.59 3 0.8978 -0.009 -0.002 -0.015 -0.023 -0.008 -0.016 12 9.41 9 0.4003 -0.042 0.002 0.068 -0.075 0.026 0.065 18 11.10 15 0.7456 -0.042 0.006 0.013 -0.014 -0.017 0.027 24 17.10 21 0.7052 0.064 -0.043 0.029 -0.045 -0.034 0.035 30 21.86 27 0.7444 0.003 0.022 -0.068 0.010 0.014 0.058 36 28.58 33 0.6869 -0.020 0.015 0.093 0.033 -0.041 -0.015 42 35.53 39 0.6291 0.070 0.038 -0.052 0.033 -0.044 0.023 48 37.13 45 0.7916 0.026 -0.021 0.018 0.002 0.004 0.037
Amazon.com Spread = ln(High/Low) Levels Differences
Augmented Dickey-Fuller Unit Root Tests Type Lags Tau Pr<Tau Zero Mean 4 -2.37 0.0174 Single Mean 4 -6.27 <.0001 Trend 4 -6.75 <.0001 Maximum Likelihood Estimation Approx Parm Estimate t Value Pr>|t| Lag Variable MU -0.48745 -1.57 0.1159 0 spread MA1,1 0.42869 5.57 <.0001 2 spread AR1,1 0.38296 8.85 <.0001 1 spread AR1,2 0.42306 5.97 <.0001 2 spread NUM1 0.00004021 1.82 0.0690 0 date To Chi- Pr > Lag Square DF ChiSq -------------Autocorrelations------------- 6 2.87 3 0.4114 -0.004 0.021 0.025 -0.039 0.014 -0.053 12 3.83 9 0.9221 0.000 0.016 0.013 -0.000 0.008 0.037 18 7.62 15 0.9381 -0.038 -0.062 0.010 -0.032 -0.004 0.027 24 15.96 21 0.7721 -0.006 0.008 -0.076 -0.085 0.045 0.022 30 19.01 27 0.8695 0.008 0.043 0.013 -0.018 -0.007 0.057 36 22.38 33 0.9187 0.004 0.027 0.041 -0.030 0.014 -0.052 42 25.39 39 0.9546 0.043 0.042 0.019 0.003 0.034 -0.016 48 30.90 45 0.9459 0.015 -0.054 -0.061 -0.049 -0.004 -0.021
Cointegration • Two nonstationary time series Yt and Xt with linear combination aYt+bXt stationary • Example: spread = log(high)-log(low) • a=1, b=-1 • Unit root test shows stationary. • More demos: Harley.sas Brewers.sas
S.E. Said: Use AR(k) model even if MA terms in true model. • N. Fountis: Vector Process with One Unit Root • D. Lee: Double Unit Root Effect • M. Chang: Overdifference Checks • G. Gonzalez-Farias: Exact MLE • K. Shin: Multivariate Exact MLE • T. Lee: Seasonal Exact MLE • Y. Akdi, B. Evans – Periodograms of Unit Root Processes
H. Kim: Panel Data tests • S. Huang: Nonlinear AR processes • S. Huh: Intervals: Order Statistics • S. Kim: Intervals: Level Adjustment & Robustness • J. Zhang: Long Period Seasonal. • Q. Zhang: Comparing Seasonal Cointegration Methods.