1 / 18

FARADAY ROTATION IN GRAPHENE

FARADAY ROTATION IN GRAPHENE. Yuliy V. Bludov Universidade do Minho, Braga, Portugal. Low-dimensional materials: theory, modeling, experiment , July 9-12, 2018, Dubna , Russia. City of Braga. 176 thousands of habitants – third city in Portugal. Bracara Augusta – roman times.

blarry
Download Presentation

FARADAY ROTATION IN GRAPHENE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FARADAY ROTATION IN GRAPHENE Yuliy V. Bludov Universidade do Minho, Braga, Portugal Low-dimensional materials: theory, modeling, experiment, July 9-12, 2018, Dubna, Russia

  2. Cityof Braga 176 thousands of habitants – third city in Portugal Bracara Augusta – roman times Portugues Rome – similar architecture of the historic center, the highest density of churches among all the cities in Portugal

  3. Graphenewithoutexternalmagneticfield M. Jablan, H. Buljan, & Soljačić, Phys. Rev. B80, 245435 (2009). Yu. V. Bludov, et al., Int. J. Mod. Phys. B, 27, 1341001 (2013).

  4. Graphene in theexternalmagneticfield A. Ferreira, et al., Phys. Rev. B84, 235410 (2011). Conductivity tensor

  5. Faraday rotation in graphene I. Crassee, et al., Nat. Phys.7, 48 (2010). Nonreciprocalphenomenon A. Ferreira, et al., Phys. Rev. B84, 235410 (2011).

  6. Outline: • Introduction – propertiesofsurfaceplasmon-polaritons • Magnetoplasmon-assistedFaraday rotationofthetransmittedlinearly-polarizedwave • Magneticcircular dichroismofthetransmittedcircularly-polarizedwave • Spoof-plasmon-assistedgiant Faraday rotation

  7. Introduction – propertiesofsurfaceplasmon-polaritons Bulkwaves Surfacewaves

  8. Introduction – propertiesofsurfaceplasmon-polaritons Graphene C. Sorger, et al., New J. Phys. 17, 053045 (2015). Firstworkon 2D plasmons:

  9. Introduction – propertiesofsurfaceplasmon-polaritons Graphene C. Sorger, et al., New J. Phys. 17, 053045 (2015). Ju, L., et al., NatureNanotechnology6, 630 (2011)

  10. Magnetoplasmon-assisted Faraday rotationofthetransmittedlinearly-polarizedwave d=50 nm, W=0.9 D m=0.175 eV, t=0.55 ps B Metal filmperforatedwiththearrayofsquareholes, anddepositedon top ofthegraphene B=1.5T, D=50 mm Magnetic field is directed perpendicularly to graphene B=7T, D=10 mm

  11. Magnetoplasmon-assisted Faraday rotationofthetransmittedlinearly-polarizedwave Low-frequency gap in magnetoplasmonspectrum Lattice vector Faraday rotation

  12. Magnetic circular dichroismofthetransmittedcircularly-polarizedwave m=-0.36 eV<0, t=1.12 ps dopedwithholes d=50 nm, D=20 mm, W=18 mm Yu. V. Bludov, M. I. Vasilevskiy, N. M. R.Peres, Phys. Rev. B97, 45433 (2018). Enhancedvisibility

  13. Magnetic circular dichroismofthetransmittedcircularly-polarizedwave

  14. Magnetic circular dichroismofthetransmittedcircularly-polarizedwave m=-0.36 eV<0, t=1.12 ps dopedwithholes decreaseoftheabsorption (ifcompared to linear polarization) increaseoftheabsorption (ifcompared to linear polarization) d=50 nm, D=20 mm, W=18 mm m=0.175 eV>0, t=0.55 ps dopedwithelectrons

  15. Spoof-plasmon-assistedgiant Faraday rotation d=30 mm, D=100 mm, W=40 mm Enhancedopticaltransmittance (EOT) Ebbesen, T. W., et al., Nature, 391, 667 (1998).

  16. Spoof-plasmon-assistedgiant Faraday rotation m=0.175 eV, t=0.55 ps B=1.5T, ds=10 mm

  17. Spoof-plasmon-assistedgiant Faraday rotation m=0.175 eV, t=0.55 ps B=7T, ds=10 mm B=1.5T, ds=10 mm For highmagneticfield ~7 T itispossible to achieveanyangleofthe Faraday rotation, [-90, 90] degrees

  18. Conclusions The Faraday rotation and MCD of an electromagnetic wave transmitted through a graphene layer are strongly influenced by adding a periodically perforated metallic film (a 2D grating) on top of graphene. If the width of the perforation holes is close to the array period (i.e. the grating looks like a thin metallic net), and the wave frequency is close to that of the magnetoplasmonresonance one can expect an increase of the Faraday rotation angle, which is a result of the magnetoplasmon-mediated transmission. When the incident wavelength is close to the period of the 2D grating, and graphene layer is arranged in the center of cavity, the spoof plasmons and multiple passage of cavity wave results in giant Faraday rotation. Nuno M.R. Peres. Mikhail I. Vasilevskiy, Universidade do Minho, Braga, Portugal Luis Martin-Moreno, TatyanaSlipchenko, Universityof Zaragoza, Spain Governo da República Portuguesa União Europeia — Fundos

More Related