1 / 30

Utility Theory in Decision Making: Preferences, Machine Learning, and Applications

Explore the Expected Utility Theory and its role in decision-making, including quantitative assessment, utility functions, and stochastic approximation within complex systems. Discover the intersection of expert preferences, information computer systems, and control applications.

blisle
Download Presentation

Utility Theory in Decision Making: Preferences, Machine Learning, and Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bulgarian Academy of Sciences,Institute of Biophysics and Biomedical Engineering,(based on merger with CBLME “Prof. Ivan Daskalov” ) SOFIA NORMATIVE UTILITY AND PRESCRIPTIVE ANALYTICAL PRESENTATION: PREFERENCES, MACHINE LEARNING AND APLICATIONS Юрий Павлов, д-р, ст.н.с. II ст.,Петър Василев, докторант, Секция «Биоинформатика и математическо моделиране», yupavlov14@hotmail.com yupavlov@clbme.bas.bg ilywrin@clbme.bas.bg

  2. DECISION MAKING, PREFERENCES, UTILITY FUNCTION AND STOCHASTIC APPROXIMATION Да разкриеш това, в което действително вярваш, да убедиш себе си и да вземеш решение! СОКРАТ The Expected Utility Theory is one of the approaches for assessment and utilization of qualitative, conceptual information. The Expected Utility together with Stochastic Programming allows for the expert preferences to be taken into account in Complex Systems and problems in prescriptive way. The subjects of this exposition are recurrent stochastic algorithms for evaluation of expert utilities and value functions and the possibilities for development of information computer systems and applications in control systems. The expert-computer dialogue discussed in the paper is a Machine Learning procedure with the same preferences as these of the expert.The main mathematical approach is the Potential Function Method. YuriP. Pavlov Central Laboratory of Biomedical Engineering, Bulgarian Academy of Sciences, e-mail:yupavlov@clbme.bas.bg

  3. Uncertainty, Information and Games http://cepa.newschool.edu/het/essays/uncert/uncertcont.htm • I - Choice under Risk and Uncertainty • (1) General Introduction(2) The Expected Utility Hypothesis(3) Subjective Expected Utility(4) The State-Preference Approach (5) The Theory of Risk Aversion(6) Riskiness • II - General Equilibrium under Uncertainty • (1) Equilibrum with State-Contingent Markets(2) Equilibrium with Asset Markets (3) Equilibrium with Incomplete Markets (4) Equilibrium with Production and Finance • III - Economics of Information • (1) Introduction: Information (2) Knowledge, Messages and Beliefs(3) Moral Hazard(4) Adverse Selection (5) Rational Expectations Equilibrium • IV - Game Theory • (1) Strategic Games: Nash Equilibrium(2) Extensive Games: Subgame Perfect Equilibrium(3) Incomplete Information Games: Bayesian Equilibrium(4) Imperfect Information Games: Sequential Equlibrium(5) Repeated Games: Folk Equilibria(6) Auctions • HomeAlphabetical IndexSchools of Thought Surveys and Essays Web LinksReferencesContactFrames

  4. EXPECTED UTILITY AND VALUE FUNCTION (pq , (p,q)P2 )  (u(.)dp u(.)dq), pP, q P. Let X is the set of alternatives (XRm).According to von Neumann & Morgenstern this formula means that the mathematical expectation of the expert utility function u(.) is a measure for the expert preferences. These preferences are defined over the set of the probability distributions P over the set of the alternatives X. With  is denote the preference relation over P (XP). The indifference relation() is defined as: x  y x  yx  y. A“value” functionis a functionu*(.)for which is fulfilled: (x, y)X2 , x  y  u*(x)>u*(y). Von Neumann and Morgenstern’s axioms: • I.The preference relation () is negatively transitive and asymmetric one (weak order); • II. (QP, 0<<1)  ((P+(1-)R)((Q+(1-)R)) (independence axiom); • III.(PQ, QR)  ((P+(1-)R)Q)((P+(1-)R)Q), for ,(0,1) (Archimedes’s axiom);

  5. DECISION SUPPORT SYSTEM

  6. APPROXIMATION OF THE EXPECTED UTILITY U*(.) The expert answers as a probability value has the representation f(.): f=D'+, , M(x,y,z,)=0, M(2/x,y,z,)<d, dR. We assume that the utility function u(.) is square-integrable function: u2(x)dFx < +, where Fx is the conditional distribution over X with respect to the distribution of the learning points F(x,y,z,. For the expected utility function u(.) it is fulfilled: We denote as (i(x)) a family of polynomials and riR. APPROXIMATION ALGORITHM:

  7. APPROXIMATION OF THE EXPECTED UTILITY U*(.) The expert answers as a probability value has the representation f(.): f=D'+, , M(x,y,z,)=0, M(2/x,y,z,)<d, dR. We assume that the utility function u(.) is square-integrable function: u2(x)dFx < +, where Fx is the conditional distribution over X with respect to the distribution of the learning points F(x,y,z,. For the expected utility function u(.) it is fulfilled: We denote as (i(x)) a family of polynomials and riR. APPROXIMATION ALGORITHM:

  8. Uncertainty and Pattern Recognition, Polynomial Representation

  9. http://cepa.newschool.edu/het/essays/uncert/uncertcont.htm • HISTORY and CONTRIBUTORS: Expected Utility Hypothesis • John von Neumann, 1903-1957;Oskar Morgenstern, 1902-1976; Jacob Marschak, 1898-1977; Harry M. Markowitz, 1923; • Subjective Expected Utility Theory • Frank P. Ramsey, 1903-1930; Bruno de Finetti, 1906-1985. - "La Prйvision: ses lois logiques, ses sources subjectives", 1937, Annales de l'Institut Henri Poincarй • "Le vrai et le probable", 1949, Dialectica • "Sull' impostazione assiomatica del calcolo delle probabilita", 1949, Annali Triestini • "Recent Suggestions for the Reconciliations of the Theories of Probability", 1951, in Neyman, editor, Proceedings of Second Berkeley Symposium • "Sulla Preferibilita", 1952, Giornale degli Economisti. • Theory of Probability, 1974-5. • Leonard J. Savage, 1917-1971 ; • Robert J. Aumann, 1930-;………….

  10. Literature

  11. FUZZY SET THEORY AN EXAMPLE OF APPLICATION IN MATLAB

  12. Алгоритъма е тип Мамдани • Ще цитираме само продукционните правила: • - (лошо обслужване) или (незадоволителна храна) • ⇒ (малко заплащане); • - (добро обслужване) ⇒ (средно заплащане); • - (отлично обслужване) или (превъзходна храна) • ⇒ (щедро заплащане). • Алгоритъмът е тип Мамдани, а методът за • дефъзификация е “центроидния”. Използваните • размити функции могат да бъдат видяни във “Fuzzy • Toolbox”.

  13. Индивидуални функции на принадлежност За дефъзификация е използван същия метод- “Centroid of the area”

  14. Новата размита функция Тя силно се отличава от тази на експерименталната експертна система изложена в MATLAB /pdf_help. Това определено говори, че крайният резултат силно зависи от вида на функциите на принадлежност. А те, очевидно, при различните ползватели е нормално да се различават. Функционалната зависимост “вход-изход” в примера структурно е определена от Мамдани модела и правилото за дефъзификация. Тази част от фъзи модела е свързана с конкретния ползвател чрез конкретните продукционни правила

  15. СРАВНИТЕЛЕН АНАЛИЗ МЕЖДУ РАЗМИТАТА ЛОГИКА И ПОЛЕЗНОСТНИЯПОДХОД Ако приемем, че “обслужването” и “храната” са независими по полезност по отношение на заплащането, то полезностната функция ще има структурния вид / x-ser. [0,10]; y-food [0,10]: f (x, y) = k1. f 1(x) + k 2. f 2( y) + k12. f 1(x). f 2(y) Коефициентите са определени на основата на експертните предпочитания,

  16. Получената полезностна функция има вида Очевидно той се отличава от този на размитите множества. Това говори, че не би трябвало храната и сервиза да влияят независимо /по полезност/ върху заплащането.

  17. Анализ от гледна точка на теорията на полезността • Ще подходим по малко по-различен начин. Ако допуснем независимост по полезност на влиянието на “храната” от влиянието на “сервиза” по отношение на заплащането структурата наполезностната функция е следната: • f (x, y) = g1( y) + g2( y). f 1(x) (2) • Това означава, че храната не се влияе от сервиза, а обратното не е вярно. Трите функции в модела (2) /g1(y)=f2(y)=f(0,y); f1(x)=f(x,0); g2(y) се определятдиректно от размития модел. Рандомизирането на частнитефункции на полезност в общата полезностна функция се извършва в съгласие с рандомизацията на общата функция /между 0 и 1/.

  18. ПОЛЕЗНОСТНА ФУНКЦИЯ: Независимост по полезност-храна Съответствието е очевидно. След визуална справка частните функции на полезност f1 и f2 бяха конструирани на основата на експертните предпочитания. Функцията h(y)=f(10,y) е взета отново от размития модел.

  19. Полезностни функции от предишния модел

  20. ПОЛЕЗНОСТНА ФУНКЦИЯ, КОНСТРУИРАНА НА ОСНОВАТА НА ПРЕДИШНИТЕ ЧАСТНИ ФУНКЦИИ НА ПОЛЕЗНОСТ На този етап изследването завърши. От практическа гледна точка за експертната система и размития модел може да се каже:“обслужването” и “храната” по отношение на “заплащането” достигат в даден момент ниво нанасищане;когато “храната” е добра “обслужването” влияе само ако е много добро или отлично; “храната” е независима по полезност. Тези три факта определят размития модел и експертния полезностен модел. Има и други нюанси.

  21. Оценяване на интуиционистка размитост-стохастично програмиране

  22. Разпознаване

  23. Разпознаване

  24. Поглед отгоре

  25. Интуиционистко множество

  26. BEST GROWTH RATE: The inclusion of a value expert model as a part of a dynamical control system can be done with the expected Utility theory. • Data modelling 1.Substrate concentration S; 2.Specific growth rate ; • Objective function - U(): 12/20/2019

  27. HISTORY and CONTRIBUTORS: Expected Utilityhttp://cepa.newschool.edu/het/essays/uncert/uncertcont.htm • HISTORY and CONTRIBUTORS: Expected Utility Hypothesis • John von Neumann, 1903-1957;Oskar Morgenstern, • 1902-1976; Jacob Marschak, 1898-1977; Harry M. Markowitz, 1923; • Subjective Expected Utility Theory • Frank P. Ramsey, 1903-1930; Bruno de Finetti, 1906-1985. – • "La Prevision: ses lois logiques, ses sources subjectives", 1937, Annales de l'Institut Henri Poincare • "Le vrai et le probable", 1949, Dialectica • "Sull' impostazione assiomatica del calcolo delle probabilita", 1949, Annali Triestini • "Recent Suggestions for the Reconciliations of the Theories of Probability", 1951, in Neyman, editor, Proceedings of Second Berkeley Symposium • "Sulla Preferibilita", 1952, Giornale degli Economisti. • Theory of Probability, 1974-5. • Leonard J. Savage, 1917-1971; • Robert J. Aumann, 1930-;..H.Raiffa…. • Allais,.., Kahneman and Tversky ,.. 1980-2000-;…

  28. NOBEL PRIZES: decision science and utility theory NOBEL PRIZES: • Arrow K. award 1972. Arrow page at Britannica Guide to the Nobel Prizes; • Debreu G. award 1983. "Least Concave Utility Functions", 1976, JMathE. Guide to the Nobel Prizes. • Allais M. award 1988.Nobel prize went to French economist Maurice Allais. • Kahneman D. award 2002. Research in decision making: psychologist Daniel Kahneman. Recent Nobel Prizes Highlight Decision Sciences. Decision sciences as a discipline has received considerable attention in recent years due to a number of Nobel prizes in economics. The seminal research by these Nobel laureates has inspired much of the current research in decision sciences. For example, the 1988 Nobel prize went to French economist Maurice Allais, who showed that individuals (even economists!) make some choices that are inconsistent with the "axioms of rationality" that economic models assume. Reinhard Selten, John Harsanyi, and John Nash shared the prize in 1994 for their foundational contributions to game theory, a normative approach to analysing competitive decisions. In 2002 the award went to two scientists who pioneered the descriptive side of research in decision making: psychologist Daniel Kahneman for bringing insights from psychological research into the study of decision making, and Vernon Smith for developing laboratory methods to study decision making in market settings.

  29. This work is partially supported by grant DID-2-29 ModProFix of the National Science Fund

  30. Thank You for Your Attention!

More Related