20 likes | 158 Views
5931. <=. <. 2314. <=. <. 7547 – 8556. <=. <. < <=. 3678 -- 4164. 1038 -- 1164. 6104 – 7368 8442 8777. <=. <. <=. <. <=. <. <=. <. <=. < <=. <. < <=. < <=. 1038. 1164. 2314. 3678 4164. 5931.
E N D
5931 <= < 2314 <= < 7547 – 8556 <= < < <= 3678 -- 4164 1038 -- 1164 6104 – 7368 8442 8777 <= < <= < <= < <= < <= < <= < < <= < <= 1038 1164 2314 3678 4164 5931 6104 7368 7547 8442 8556 8777 9114 MIS 3500 * Exercise: B+Tree with degree of 3 - Soluation a. Solution with operators < <= (as in class notes). < 6104 <= b. <3678<= <8442<=…<8777<= <4164<=…<5931<= <1164<=...<2314<= <7368<=…<7547<= <8556<= <9114<= 5931 1038 1164 2314 3678 4164 6104 7368 7547 8442 8556 8777 9114 Solution with operators <= < .
1038 1164 2314 3678 4164 5931 6104 6104 c. <= < 2314 -- 3678 8442 -- 8556 <= < < <= <= < < < = 1038 -- 1164 3678 5931 7368 – 7547 8556 9114 <= < <= < <= < <= < <= < < <= < <= <= < <open> 7368 7547 8442 8556 8777 9114 Solution like (b) but a different root value. It leaves a space for a new value to be inserted at the top point of the leaf set (9114). A B+-tree can be expanded at the leaf level. Since the key values are stored in increasing order (reading left-to-right), sequential search within a leaf is possible. For example, the leaf level bound by 1038 can store values smaller than 1038; the middle set ranges from 1039 to 1164; and the subsequent set stores from 1165 to 2314.