1 / 43

Cherenkov Telescope Array: Advanced Facility for Ground-based Gamma-ray Astronomy

The Cherenkov Telescope Array (CTA) is an advanced facility for ground-based gamma-ray astronomy with improved sensitivity and angular resolution. It aims to extend the energy range, increase survey capabilities, and monitor multiple objects simultaneously.

bogen
Download Presentation

Cherenkov Telescope Array: Advanced Facility for Ground-based Gamma-ray Astronomy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Cherenkov Telescope Arrayan advanced facility for ground-based gamma ray astronomy Jean-Francois Glicenstein IRFU, CEA-Saclay Cherenkov Telescope Array J-F Glicenstein

  2. Status of VHE gamma-ray astronomy The VHE gamma-ray sky (March 2010) http://www.mppmu.mpg.de/~rwagner/sources/ ~100 sources (60 galactic) Cherenkov Telescope Array J-F Glicenstein

  3. Physics and « wish list » • extend E range beyond 50 TeV • better angular resolution • larger FOV • Galactic sources • AGN • Surveys • New physics • clusters/extended sources • dark matter and astroparticle physics • monitor many objects simult. • extend E range under 50 GeV • increase surveying capabilities • better flux sensitivity (factor > 10)

  4. The CTA concept 2 arrays: north+south  all-sky coverage core array 100 GeV-10 TeV ~ 40 ø=12 m telescopes low energy section Ethresh ~ 10 GeV a few ø=23 m telescopes high energy section ~ 40 ø=6 m tel. on 10 km2 area Cherenkov Telescope Array J-F Glicenstein

  5. Performances: array sensitivity x 10 flux sensitivity gain energy range increase K. Bernloehr, arXiV0801.5722 Cherenkov Telescope Array J-F Glicenstein

  6. Performances: angular resolution • Angular resolution improves as more telescopes used in reconstrution • Angular resolution closer to theoretical limit MILAGRO HAWC Fermi HESS factor 3 improvement CTA theoretical limit (Hoffman 2005) S.Funk, J.A. Hinton, arXiV0901.2153

  7. CTA operation modes Survey mode: Full sky at current sensitivity in ~1 year Monitoring 4 telescopes Very deep field Deep field ~1/3 of telescopes Cherenkov Telescope Array J-F Glicenstein

  8. Expectations for Galactic plane survey Funk,Hinton,Hermann,Digel, arXiV0901.1885 • assumes • x 2 improvement in hadron rejection • x 2 gain in angular resolution • x 10 gain in effective area  overall increase in sensitivity of ~ 9 • expect ~ 300 sources in -30 deg≤ l ≤ 30 deg. HESS map of the Gal.plane, total exp ~500 hours simulated CTA map, flat exposure ~ 5 hours/field Cherenkov Telescope Array J-F Glicenstein

  9. Fundamental physics: Dark Matter Draco dwarf galaxy, 20 hours Ursa Minor dwarf galaxy • flux sensitivity better by one order of magnitude • better angular resolution  enhanced S/N for NFW profiles • sensitive to DM annihilations from Draco,Sculptor, Sgr dwarf • other target:clumps from the galactic halo 95% CL exclusion region Astrophysical uncertainties Annihilation cross section for thermally-produced DM 330 GeV c J.Buckley et al, arXiV0810:0444 E. Moulin, A. Viana Cherenkov Telescope Array J-F Glicenstein

  10. The CTA design study • Aims: • select the appropriate sites • reduce production costs of telescopes, sensors, electronics etc (technology already proven with HESS, MAGIC,VERITAS). • improve reliability of components and systems • 22 countries (France, Germany, Spain, Poland, Italy ..) • ~ 180 FTE physicists+engineers • spokespersons: W.Hoffman (MPIK Heidelberg) M.Martinez (IFAE, Barcelone) • competiting project: AGIS (USA), merge likely at some point • design study started in 2008 (Barcelona meeting) • new organization for the CTA-PP (preparatory phase of the FP7, to start in 2010) Cherenkov Telescope Array J-F Glicenstein

  11. Workpackages of the DS performances physics cases instruments observatory selection and operations Cherenkov Telescope Array J-F Glicenstein

  12. Site Evaluation • Goal: short list of sites (Northern, Southern hemisphere) • Contact with other projects(AGIS,LLAMA) • Requirements: • Flat Area 3km x 3km (South), 1km x 1km(North) • Cloud Coverage: > 70% of clear nights • Altitude 1500m –4000m • Latitude +30N -30S • dry, transparent, low aerosol atmosphere • Infrastructures • Roads • Hospitals • Airports White: 6 criterias Ligth red: 5 Dark red: 4 Orange: 3 Green: 2 Dark green: 1 Map obtained with FriOwl C.Medina, CBoisson Cherenkov Telescope Array J-F Glicenstein

  13. Site evaluation (2) • Precise measurements to follow on the short list of sites. • Site visit to evaluate infrastructure potential • Atmosphere measurements: LIDAR, seeing.. • Potential sites in Argentina, Namibia, South Africa (South) Canaries, Baja California (North) 30 cm telescope (« miniscope ») seeing monitor Warsaw University PMT (UVScope) +8x8 MAPMT camera NSB measurements transparency INAF/ISAF Palermo Cherenkov Telescope Array J-F Glicenstein

  14. CTA instruments mirrors focal plane telescope electronics focal plane instruments Cherenkov Telescope Array J-F Glicenstein

  15. Requirements for telescopes • dish ø=6 m (small) ø=12 m (medium) ø=23 m (large) • dish shape spherical (Davies-Cotton): S+M, parabolic (L) • f/d = 1.4 (M) and 1.2-1.4 (L) • Camera Field of View: 8° (M), 5° (L) • Number of pixels in camera ~ 1500 (M), ~2500 (L) • Camera weight: 2.5 tons (M), 2 tons (L) P.Colin Cherenkov Telescope Array J-F Glicenstein

  16. Small size telescope • 2 options: • (baseline) 6 meter dish, camera 9 deg FOV, 1300 PMT • 2 mirror design, primary mirror 3.5 m, camera 8 deg FOV, 1600 pixels MAPMT or SiPM INAF UK groups MPIK Heidelberg IFJ Pan Cherenkov Telescope Array J-F Glicenstein

  17. 12-meter class telescopes • previous designs: HESS, VERITAS OK • CTA DS focused on • cost reduction, • improvement of reliability .. HESS VERITAS Cherenkov Telescope Array J-F Glicenstein

  18. 12-meter class telescopes (2) • DESY (Zeuthen, Hamburg), ANL, IRFU Saclay design • Prototype to be built in Berlin in 2010-2011 Cherenkov Telescope Array J-F Glicenstein

  19. 23-meter class telescopes • possible design: extrapolate from MAGIC 17 m telescopes MAGIC MERO (company) design MPI-P Munich, LAPP Annecy Cherenkov Telescope Array J-F Glicenstein

  20. CTA instruments mirrors Cherenkov Telescope Array J-F Glicenstein

  21. Mirror specifications • hexagonal • size: 1200 mm ± 2 mm flat to flat (MST prototype) • weight < 35 kg/m2 (including AMC and fixations) • reflectance > 80% (300-600 nm) • spot size < 1mrad (68% containment) • spherical with radius 30-40 m (MST), aspherical (LST) Cherenkov Telescope Array J-F Glicenstein

  22. Mirror developpement (1) • MAGIC I-II aluminium mirror (INFN Padova) • diamond milling • MAGIC II glass mirrors (INAF, Mediolario) • produced by the « cold slumping » technique. Cherenkov Telescope Array J-F Glicenstein

  23. Mirror developpement (2) • Carbon/glass fiber composite mirrors (IRFU-Saclay, IFJ Cracow, SRC Warsaw) Mold with suction Carbon sheets 1.5 mm thick Cherenkov Telescope Array J-F Glicenstein

  24. Mirror R&D at IRFU-Saclay Carbon fiber Glass fiber Aluminium Cherenkov Telescope Array J-F Glicenstein 24

  25. CTA instruments focal plane instruments Cherenkov Telescope Array J-F Glicenstein

  26. Focal plane instrumentation (1) • Baseline option: PMTs (Hamamatsu, Electron Tubes) • look for compromise between QE, afterpulsing, pulse width, cost.. selection box for HESS2 R8619 R9420-100 Quantum efficiencies M.Shayduk et al, NIM A (2010) Afterpulsing rates J.Bolmont Cherenkov Telescope Array J-F Glicenstein

  27. Focal plane instrumentation (2) G-APD+ MAGIC read-out • other options: MCPPMT,G-APD • useful for 2-mirror telescopes designs • test: 4 MPPC in MAGIC camera A.Biland et al, NIM A (2008) • FACT camera (see talk by T.Krahenbuhl) I.Braun et al, NIM A (2009) • full camera • 1440 pixels • on HEGRA CT3 telescope 1 pixel=4 G-APD Winston cone Hamamatsu MPPC S10362-33-50C 50 m x 50 m cell size Weitzel et al, ICRC 2009

  28. CTA instruments electronics Cherenkov Telescope Array J-F Glicenstein

  29. Signal readout and telescope trigger • Options for camera: • compact camera with electronics on board (HESS, VERITAS) or • signal sent to ground (MAGIC) • compact option was retained (except maybe LST…) • Options for read-out: • Sampling at ~ 300 MHz with FADC (fully digital camera) MPIK Heidelberg, ETH Zurich, Leeds, Uni. Zurich, AGH • analogue memories (1 GHz sampling)+ADC Pisa, IRFU Saclay, LPNHE, LPTA, Uni. Barcelona • Local trigger of telescope: • analog or digital (analogue memories based read-out) spanish groups (IFAE..), DESY • digital (FADC) Cherenkov Telescope Array J-F Glicenstein

  30. Analogue memories-based FE boards • NECTAr: IRFU/LPNHE/LPTA/Univ. Barcelona • see poster by S.Vorobiov • based on SAM chip (HESS2) • new developpment to reduce power consumption and integrate the ADC • Dragon: Pisa • based on commercially available DRS-4 chip photons digital output to acq. farm integrated analogue memories+ ADC conversion NECTAr Cherenkov Telescope Array J-F Glicenstein

  31. Tests of FE boards NECTAr: test board for Gbit ethernet transmission DragonI test board Cherenkov Telescope Array J-F Glicenstein

  32. Array trigger MPIK Heidelberg/ APC Paris • Idea: keep all locally triggered event in a deep (1 s) FIFO • Trigger decision done centrally on time coincidences • Require clock synchronisation with a few ns accuracy MUTIN board (APC) Cherenkov Telescope Array J-F Glicenstein

  33. Timeline for CTA design study fp7 prep. phase conceptual design report Cherenkov Telescope Array J-F Glicenstein

  34. Summary and prospects • CTA will be the major observatory in VHE gamma ray astronomy in the 2020s with both guaranteed astrophysics and a significant discovery potential. • The CTA design study is aiming at reducing costs and improving reliability of instruments and systems. • It is still on-going, with significant advances in mirror technology, telescope design (MST), electronics. • The FP7 prep. phase for CTA should start in 2010 (duration 3 years). Cherenkov Telescope Array J-F Glicenstein

  35. BACK-UP SLIDES Cherenkov Telescope Array J-F Glicenstein

  36. Front end electronics - Krakow CTA meeting

  37. Dragon-I Prototype • Prototype board – Dragon-I • Design driven by mechanical constraints to match Magic-II cluster box • Small form factor FPGA • Altera Cyclone • Fitted in PMT cluster box • Dimensions 5x20 cm • 8 input channels • 7 from PMTs • 1 free (e.g. ext clock) • Octal ADC • AD9222 run at 32 MHz • Parallel LVDS read-out • Dual readout interface • USB2.0 • Bitwise QuickUSB module • Ethernet 100Mbps • Matches the 5 MB/s transfer goal TRG IN CLK IN Cyclone FPGA ADC DRS4 QuickUSB module Ethernet 5 cm 20 cm Dragon-I – USB2.0 and Ethernet versions Dragon sampler CTA ELEC/FPI WP Meeting Tuesday April 7 2009, Paris

  38. From the ARS0 to the NECTAr analog memory HESS1 HESS2 CTA (proposed) (*) New measurements

  39. NECTar analog memories: wide layout option NECTAR CORE SAM CORE • 4*1024 cell matrix • DAC removed • integration of the ADCs Swift Analog Memories 11 mm2, 60000 transistors

  40. Procédé (1) • bandes de G10, aluminium • ou carbone préformées • épaisseur 1.5 mm • rayon de courbure d’un des côtés: • ~ 30 mètres • collage en forme de treillis Cherenkov Telescope Array J-F Glicenstein

  41. Procédé (2) • collage des panneaux carbone • sur le treillis au dessus du moule • collage de la feuille de verre • au dessus du moule • aluminisation moule 50x50 + dispositif de suction Mold with suction Carbon sheets 1.5 mm thick Cherenkov Telescope Array J-F Glicenstein

  42. HESS Old foam mirror Saclay -carbon Cherenkov Telescope Array J-F Glicenstein

  43. CTA in context of HE/VHE gamma rays facilities Cherenkov Telescope Array J-F Glicenstein

More Related