1 / 38

How can we sequence-specifically target the DNA duplex?

Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: http://www.bu.edu/cab. How can we sequence-specifically target the DNA duplex?. H DNA. Triplex .  Displaced strand. Triplex . Displaced strand . 1985. base triads.

boris
Download Presentation

How can we sequence-specifically target the DNA duplex?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Targeting duplex DNA: strategies and applicationsMaxim Frank-Kamenetskiimfk@bu.eduBoston Universityreprints at:http://www.bu.edu/cab

  2. How can we sequence-specifically target the DNA duplex?

  3. H DNA Triplex   Displaced strand Triplex  Displaced strand  1985

  4. base triads Hoogsteen pairing Watson-Crick pairing Hoogsteen pairing Watson-Crick pairing

  5. The DNA double helix major groove minor groove

  6. Old-fashioned single-molecule experiment JMB 1993 JMB 1993

  7. PNA as a tool for targeting duplex DNA

  8. PNA PNA – A DNA Mimic with Unique Properties DNA Peptide Nucleic Acidcarries is the same bases as DNA (red), but has a totally different protein-like backbone (blue) Nielsen et al. 1991

  9. PNA features  Neutral backbone • Stronger and faster binding to nucleic acids • High sequence-specificity • No nucleic acid  no degradation by nucleases • No peptide  no degradation by protease Strand invasion into duplex DNA

  10. PNA/DNA duplexes are more stable than DNA/DNA duplexes

  11. FISH of telomeres using PNA Peter Lansdorp (University of British Columbia, Canada)

  12. PNA FISH for bacterial detection Staphylococcus aureus (green) AdvanDx Inc. , Woburn, MA

  13. PNA openers Triplex Invasion Double Duplex Invasion Homopyrimidine PNA Pseudocomplementary pcPNA any base composition

  14. base triads Hoogsteen pairing Watson-Crick pairing Hoogsteen pairing Watson-Crick pairing

  15. A pair of pseudocomplementary PNAs (pcPNAs) invade into the DNA double helix in a strictly sequence-specific manner PNAS 2004

  16. dsDNA Triplex Invasion Complex “ P-loop “ H2N-Lys-CCTCTCTT Example: linker H-Lys2-JJTJTJTT J C C+ H H H N H H H H C H H R N R N N N N H H H H H H N N+ H O O O H N N N N O R R H H N N N N O O H o o g s t e e n H o o g s t e e n G G H H N N N N N N pairing pairing R R H H W W a a t t s s o o n n - - C C r r i i c c k k pairing pairing Triplex Invasion into Duplex DNA by PNA “Openers” Homopurine site within dsDNA PNA “opener”: Two homopyrimidine PNA oligomers connected by a flexible linker (bis-PNA) + ++ J bases eliminate pH dependence of triplex invasion C*G:C (pH5) J*G:C (pH7)

  17. PNA openers = 6-10 5' 3' NH2 COOH 3' 5' PD-loop 3' 5' N=4-10 Targeting duplex DNA through PD-loop • Two PNA openers are able to sequence-specifically hybridize to complementary target sites in duplex DNA • DNA probe can hybridize to the displaced strand forming a stable complex PNAS 1998

  18. Capturing duplex DNA using PD-loop Capturing a fragment from the entire yeast genome PD-loop PNAS 1998

  19. Applications of PNA openers

  20. Hybridization/extension of primer Hybridization/circularization of oligonucleotide Hybridization of DNA or PNA beacon “Artificial primosome” . . . . . . . . . . . . . . . . . . . . . . . . . . . “Earring Probe” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DNA sequencing, Ligand Mapping F Q Assembly of novel DNA structures, DNA diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DNA detection PNA openers and some of their applications dsDNA bis-PNA openers homopyrimidine sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Locally open dsDNA

  21. Molecularbeacons JACS 2002

  22. PNA openers ligand DNA polymerase Nascent DNA strand DNA polymerase pausing due to drug binding to dsDNA JMB 2003

  23. Mapping drug’s binding sites on dsDNA via artificial primosome PNA II  PNA I 

  24. DNA detectionusing PNA openers

  25. PD-loop as a tool for detection of short signature sites

  26. New methods of DNA-based detection AEM 2007 BMC 2007

  27. E.coli B.subtilis S.mutans Proof-of-principle studies on bacterial cells chosen signature sites: 21-nt-target site in E.coli cold shock protein gene GGAGAGAGACTCAAAAGAAGG 23-nt-target site in B.subtilis the phosphoglycerate dehydrogenase gene GAAAAGAAACCCTTCAGAGGAAG 22-nt-target site in S.mutans the wall-associated protein gene AAAAGAGGTATTTTAAGAGGAA (PNA binding sites are underlined) These sites are unique for each of the bacteria throughout the Bacterial Genomes Database AEM 2007

  28. Potential Application:Viral DNA Detection

  29. Solid-state nanopore NanoLetters 2010

  30. NanoLetters 2010

  31. Duplex DNA labeling using nicking enzymes NAR 2008

  32. PNA openers Triplex Invasion Double Duplex Invasion Homopyrimidine PNA Pseudocomplementary pcPNA any base composition

  33. g-PNA ArtDNA 2010

  34. Capturing duplex DNA using PD-loop Capturing a fragment from the entire yeast genome PD-loop PNAS 1998

  35. Affinity capture using g-PNA: linear dsDNA ArtDNA 2010

  36. Affinity capture using g-PNA: supercoiled DNA (scDNA) ArtDNA 2010

  37. Acknowledgements • Boston University • Irina Smolina • Heiko Kuhn • Nancy Miller • Amit Meller and his group • Harvard Medical School • Charles Lee • US Genomics • Katya Protozanova • Gary Jaworski • Rhea Mahabir • Copenhagen University • Peter Nielsen • Carnegie Mellon University • Danith Ly • Funding: • Wallace H. Coulter Foundation. • NIH

More Related