1 / 9

一、 k 重因式

1.6 重因式. 一、 k 重因式. 二、重因式的判别和求法. 一、 k 重因式. 定义 9 p ( x ) 称为 f ( x ) 的 k 重因式,是指 p ( x ) 不可约 ; p k ( x )| f ( x ), 而 p k+1 ( x ) 不能整除 f ( x ). 注:⑴ k = 0, p ( x ) 非 f ( x ) 的因式;. ⑵k = 1, p ( x ) 是 f ( x ) 的单因式;. ⑶ k > 1, p ( x ) 是 f ( x ) 的重因式.

bowie
Download Presentation

一、 k 重因式

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1.6 重因式 一、k 重因式 二、重因式的判别和求法

  2. 一、k重因式 定义9p(x)称为f (x)的k重因式,是指 p(x)不可约; pk(x)| f (x), 而 pk+1(x) 不能整除f (x). 注:⑴ k = 0, p(x) 非 f (x) 的因式; ⑵k = 1, p(x) 是 f (x) 的单因式; ⑶k>1, p(x) 是 f (x) 的重因式. ⑷设f (x)典型分解为,则pi是f (x) 的 ri重因式(ri = 1,为单因式,ri>1, 为重因式),i = 1,2,…,s.

  3. 二、重因式的判别和求法 1.定义 设 f(x) =anxn+ an-1xn-1 + ··· + a1x1 + a0 , 规定f /(x) = nanxn-1 + (n-1)an-1xn-2 + ··· + 2a2x + a1 为 f(x) 的一阶微商(导数),f /(x)的微商(f /(x))/ = f //(x)为f(x) 的二阶微商等,f(x) 的k阶微商记为f (k)(x) . • 简单性质: 1) (f + g)/ = f / + g /; (cf ) / = cf /; (fg)/ = f /g + fg /; (fm(x))/ = m(f m-1(x)f /(x). • 如上定义仅是一种形式的定义,并未赋予微商具体的,如同“数学分析”类似的意义. 又f (k)(x) ≠f k(x) . • ∂f = n, 则有 ∂f / = n-1;∂ (f (n)) = 0;f(n+1) = 0. • 例 f(x) = 3x4-5x3+2x-1,f /(x) = 12x3-15x2+2 .

  4. 例1

  5. 例1.判别多项式   有无重因式.若有,求出其重因式.

More Related