270 likes | 426 Views
Average Fe K α emission from distant AGN. Amalia Corral IFCA(Santander)/OAB(Milano) M.J. Page : MSSL (UCL), UK F.J. Carrera, X. Barcons, J. Ebrero : IFCA (CSIC-UC), Spain S. Mateos, J.A. Tedds, M.G. Watson : University of Leicester, UK
E N D
Average Fe Kα emission from distant AGN Amalia Corral IFCA(Santander)/OAB(Milano) M.J. Page: MSSL (UCL), UK F.J. Carrera, X. Barcons, J. Ebrero: IFCA (CSIC-UC), Spain S. Mateos, J.A. Tedds, M.G. Watson: University of Leicester, UK A. Schwope, M. Krumpe: Astrophysikalisches Institut Postdam, Germany X-ray Universe 2008, Granada, 27thMay 2008
Non-rotating BH Inclination angle Maximum-rotating BH Introduction • XRB (X-Ray Background) is known to be composed of discrete sources, most of them are AGN. • XRB synthesis models, ingredients: - AGN intrinsic column density and acretion rate distribution and their evolution as a function of Luminosity and redshift. - Average radiative efficiency of accretion onto Supermassive Black Holes -> Measure from Fe line relativistic profile.
Previous Results • Local samples: EW(relativistic) ~ 100-200 eV (Guainazzi+06, Nandra+07) • Distant AGN ->average or stack many spectra together: EW(relativistic) ~ 400 (type1) - 600(type2) eV (Streblyanska+05,Brusa+05)
Our sample • AGN from theAXIS (An International XMM-Newton Survey) and XWAS(XMM-Newton Wide Angle Survey) medium surveys (average flux ~ 5x10-14 erg cm-2 s-1) . • Optical spectroscopic identifications (>80 counts 0.2-12 keV): Type 1 AGN:606 sources Type 2 AGN:117 sources
Our sample • Sample selection: Individual spectra > 80 counts in 0.2-12 keV
Averaging method • Fit an absorbed power law above 1 keV rest-frame and unfold the un-grouped spectra: best-fit model. • Correct for Galactic Absorption. • Shift to rest-frame. • Normalize using the 2-5 keV rest-frame band. • Rebin to 1000 final counts/bin. • Average.
Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Fit simple power law in 2-10 keV : Type 1:Γ=1.92±0.02 Type 2:Γ=1.44±0.02
Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Broad relativistic profile not clearly present
Simulations • 100 simulations (best-fit model) per real spectrum including Poisson counting noise and keeping the same 2-8 keV observed flux, exposure time and calibration matrices as for the real data. • Significance contours by removing the 32% (1σ level) and 5% (2σ level) extreme values.
·· 1σ confidence limit -- 2σ confidence limit ● Simulated continuum ▪ Average spectrum Results
·· 1σ confidence limit -- 2σ confidence limit ● Simulated continuum ▪ Average spectrum Results
Spectral fit • Baseline model: • 100-simulations continuum: mixture of absorbed power laws. • Narrow emission line.
Spectral fit – Type 1 AGN • Best-fit model: Baseline model plus neutral reflection: Egaus = 6.36±0.05 keV σgaus= 80±80 eV EWgaus = 90±30 eV i = 60±20º R=0.5±0.20
Spectral fit – Type 1 AGN • Best-fit model: Baseline model plus neutral reflection: Egaus = 6.36±0.05 keV σgaus= 80±80 eV EWgaus = 90±30 eV i = 60±20º R=0.5±0.20
Spectral fit – Type 1 AGN • Best-fit model: Baseline model plus neutral reflection: Egaus = 6.36±0.05 keV σgaus= 80±80 eV EWgaus = 90±30 eV i = 60±20º R=0.5±0.20 EW(broad relativistic line) < 400 eV at 3σ confidence level
Spectral fit – Type 2 AGN • Model: Baseline model plus neutral reflection: Egaus = 6.36±0.07 keV σgaus= 80±60 eV EWgaus = 70±30 eV i < 80 R > 0.7
Spectral fit – Type 2 AGN • Model: Baseline model plus neutral reflection: Egaus = 6.36±0.07 keV σgaus= 80±60 eV EWgaus = 70±30 eV i < 80 R > 0.7
Spectral fit – Type 2 AGN • Model: Baseline model plus Laor line: Egaus = 6.36±0.07 keV Elaor ~ 6.7 keV σgaus= 80±60 eV EWgaus = 70±40 eV EWlaor ~ 300 eV i ~ 60º
Spectral fit – Type 2 AGN • Model: Baseline model plus Laor line: Egaus = 6.36±0.07 keV Elaor ~ 6.7 keV σgaus= 80±60 eV EWgaus = 70±40 eV EWlaor ~ 300 eV i ~ 60º
Spectral fit – Type 2 AGN • Model: Baseline model plus Laor line: Egaus = 6.36±0.07 keV Elaor ~ 6.7 keV σgaus= 80±60 eV EWgaus = 70±40 eV EWlaor ~ 300 eV i ~ 60º Neutral reflection and Relativistic line give the same fit
Type 1 AGN: sub-samples • Number of counts 2-10 keV > 2x105 allow us to test evolution with different parameters by dividing the sample in 3 subsamples of equal quality (i.e. number of total counts): redshift, flux and luminosity. • We found no dependence for the emission features on redshift or flux. • Dependence on Luminosity -> Iwasawa- Taniguchi effect?
Conclusions • Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV. • Type 1 AGN: No compelling evidence of a Broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. • Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.
Conclusions • Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV. • Type 1 AGN: No compelling evidence of a Broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. • Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.
Conclusions • Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV. • Type 1 AGN: No compelling evidence of a broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. • Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.
Conclusions • Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 90 eV. • Type 1 AGN: No compelling evidence of a broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. • Type 2 AGN:Statistics insufficient to distinguish between a relativistic line and a reflection component.