1 / 46

PIONIC HYDROGEN

PIONIC HYDROGEN. D. Gotta, IKP, FZ Jülich for the PIONIC HYDROGEN collaboration Debrecen – Coimbra – Ioannina – Jülich – Paris – PSI – Vienna. goal of the measurements experimental approach and challenge strong-interaction shift  1s and width  1s.

braima
Download Presentation

PIONIC HYDROGEN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PIONIC HYDROGEN D. Gotta, IKP, FZ Jülich for the PIONIC HYDROGEN collaboration Debrecen– Coimbra – Ioannina – Jülich – Paris – PSI – Vienna • goal of the measurements • experimental approach and challenge • strong-interaction shift 1s and width 1s CSB 2005 Trento - 15. 6. 2005

  2. PIONIC HYDROGEN - N scattering at „rest“ ATOMIC CASCADE 2 isospin scattering length a= a-p-p a+p+p isospin invariance: mu = md a-p-p + a+p+p = - 2 a-pon 1sa -p  -p a ++a – 1s(1+1/P)(a -p  o n)2 (1+1/P)(a –) 2 PANOFSKY ratio P –p on/ –p n = 1.546  0.009 J. Spuller et al., Phys. Lett. 67 B (1977) 479 EK = 2.5 keV strong interaction observable as shift and broadening  1s+ 7 eV attractive 1s1 eV

  3. N isospin scattering lengthsa &a – N coupling constant N sigma term N GOAL 1s /1s  0.2%&1s /1s  1-2%

  4. N sigma-term N Goldberger- Miyazawa-Oehme (GMO) sum rule  1%     current algebra Weinberg,Tomozawa: chiral limit mquark 0 Goldberger-Treiman relation N coupling constant fN Sigma term  

  5. EXPERIMENT

  6. ultimate energy resolution spherically bent Bragg crystal position & energy resolution  background reduction byanalysis of hit pattern high stop density  high X - ray line yields  bright X - ray source

  7. SET-UP at PSI cyclotron trap II more muons X-ray tube cryogenic target 0 – 40 stp H2 crystal spectrometer spherically bent crystals CCD X-ray detector  2  3 matrix 75  50 mm2

  8. DEGRADERS andCRYOGENIC TARGETinsideCYCLOTRON TRAPsuper-conducting split coil magnet  beam  109/s   = 26 ns   stop efficiency fstop  density  1% @ stp  X - rays

  9. Spherically curved Bragg crystalradius of curvature 3 m crystal cuts used Si 111 Si 110 quartz 10-1 to be used quartz 1-20 100 mm 

  10. Large - Area Focal Plane Detector 2  3 CCD 22 array with frame buffer pixel size 40 m 40 m 600  600 pixels per chip frame transfer  10 ms data processing 2.4 s operates at – 100°C  150 eV @ 4 keV X 90% cooling (LN2) storage area  flexible boards  image area N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419

  11. Lorentz tails Doppler broadening  previous experiment  new experiment PEAK / BACKGROUND and FIT INTERVAL ! massive concrete shielding + large area X-ray detector PEAK-TO-BACKGROUND ratio improved by one order of magnitude !

  12. ATOMIC CASCADE andSTRONG-INTERACTION EFFECTS

  13. pnot an isolated system ! CASCADE - COLLISIONAL PROCESSES p+ H2  » dangerous effects «  • [(pp)p]ee – molecule formation („DH“) • radiative de-excitation ? • had 2.Coulomb de-excitation ! non radiative process ni nf + kinetic energy Doppler broadening had

  14. 1. MOLECULAR POTENTIALS "Vesman“ mechanism for excited states:pnl + H2[(pp) njvp] eeK experimentR. Pohl et al., Hyp. Int. 138 (2001) 35theoryS.Hara et al. I.Shinamura quenching of p 2s via [(pp)p]ee formation V.I.Korobov, … X-ray transitions from slightly shifted bound states ? consequences for H (np  1s) transitions EX EX - E? (how many) bound states below dissociation limit of 4.5 eV ? Jonsell, Froelich and Wallenius for n=1,2,3 Phys. Rev A 59 (1999) 3440 ppµ ddµ X-ray / total  0.03  1 Lindroth, Wallenius and Jonsell Phys. Rev A 68 (2003) 032502 Kilic, Karr and Hilico to be published

  15. I.1s unbiased energy determination

  16. H(3p - 1s) - density dependence H/ O energy calibration simultanuously ____________________ alternatelyH/ O mixture 4He / 16O2 / 18O2 ( 80%/10%/10%) 2 bar @ T = 86K mixture H2 / 16O2 (98%/2%) 1.2 bar @ T = 85K  4 bar  equivalent density H2  2 bar @ T = 20K  28.5 bar  equivalent density H2 1 bar @ T = 17K  LH2 first time

  17. R-98.01 Maik Hennebach, thesis Cologne 2003 1s = + 7.120  0.008  0.009 eV  0.007 eV LH2  previous experiment previous experiment – Ar K ETHZ-PSI H.-Ch.Schröder et al. Eur.Phys.J.C 1(2001)473 H(3p-1s) energyno density dependence identified EQED = ± 0.006 eV old! EQED = ± 0.001 eV new! P. Indelicato, priv. comm.

  18. II.LINE WIDTH MEASURED LINE SHAPE = RLD crystal1sDoppler broadening resolution Coulomb de-excitation ECRITHmuonic hydrogen

  19. RESPONSE FUNCTION

  20. diffraction theory XOP2 code plane crystal 387 meV similar to a Lorentzian in the tails

  21. T = 295K RESPONSE FUNCTION I EXOTIC ATOM 3500 events 3 days closest to energy of H(4p-1s)

  22. aperture  6.4 GHz, 450 W CCD detector RESPONSE FUNCTION II CRYSTAL SPECTROMETERandPSI ECRITElectron Cyclotron Resonance Ion Trapcyclotron trap (4) + hexapole magnet (2) D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116 Tion 5 eV "cold" plasma ! He-like electronic atoms  narrow X-ray transitions X = 10 - 40 meV D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9 to be publ. In Nucl. Instr. Meth. A

  23.  = 10 –8 s ECRIT measurements 2004 M1 transitionsin He-like S H(2p-1s) Cl H(3p-1s) Ar H(4p-1s) 2 3S1 1 1S0 M1 transition 30000 events in line  tails can be fixed with sufficient accuracy

  24. LINE WIDTH and INITIAL STATE ECRIT results confirm C data not corrected for Coulomb de-excitation crystal resolution subtracted previous experiment 1s< 850 meV Maik Hennebach, thesis Cologne 2003

  25. COULOMB DE-EXCITATION

  26. pnot an isolated system ! CASCADE - COLLISIONAL PROCESSES p+ H2  » dangerous effects «  • [(pp)p]ee – molecule formation („DH“) • radiative de-excitation ? • had 2.Coulomb de-excitation ! non radiative process ni nf + kinetic energy Doppler broadening had

  27. 2. COULOMB DE-EXCITATION NEUTRON - TOF(– p)ns 0 n (–H)n+H=H(–H)n-1+H+H+kinetic energy non-radiative transitions  quasi-discrete velocity profile n – TOF / ns A. Badertscher et al., Eur. Phys. Lett. 54 (2001) 313

  28. Monte-Carlo simulation µ–H (2p-1s) @ 15 bar 1.89 keV  Coulomb de-excitation   cascade model calculation (V.E. Markushin – PSI) MUONIC HYDROGEN - to quantify Coulomb de-excitation - to identify other possible cascade effects from X-ray line shape

  29. 50% of envisaged statistics Coulomb de-excitation • low-energy component • intermediate-energy component • high-energy component ----- crystal response ECRIT 2004 MUONIC HYDROGEN RUN 12/2004 analysis in progress  no satellites from molecular formation identified triplet / singlet = 3.00.2

  30. KINETIC ENERGY DISTRIBUTIONS- prediction -Jensen / Markushin at the moment of the 3p - 1s transition µH H ... 5-4 4-3 ... 5-4 4-3 experiment cascade theory HH limits "box" assumptions

  31. EXTRACTION Of THE NATURAL LINE SHAPE H(3p-1s) response function subtracted --- Doppler „boxes“  natural line width 1s - - total Coulomb de-excitation 4 - 3 good peak / background essential! 

  32. HADRONIC BROADENING

  33. ECRIT RESULTS and HADRONIC WIDTH Fit to boxes from Coulomb de-excitation and ECRIT crystal resolution subtracted previous experiment 1s  865  69 meV (7%)  H.-Ch.Schröder et al. Eur.Phys.J.C 1(2001)473 R-98.01 1s  785  27 meV preliminary

  34. PIONIC HYDROGEN - status R-98.01 PT + Panofsky previousachieved infinally exp.*1. step envisaged 1s/1s0.5%  0.2% 0.2%  2.9 % to be done final high statistics run 1s/1s7 % 3 - 4% 1-2%0.8 %

  35. PT theory SCATTERING LENGTHS f1 problem 1s [a+a – ] (1 + )   =  7.2  2.9 % J. Gasser et al.,Eur. Phys. J. C 26 (2003) 13 1s [a –(1 +  ) ] 2 = + 0.6  0.2 % P. Zemp, thesis Bern‘04 no f1 problem

  36. H- hadronic shift 1s&Ns-wave isospin scattering lengths Deser formula incl. Coulomb - strong-int. interference Trueman (1961), … 2nd order PT O(2) in  = q,  =1/137, (md-mu) LECs f1 , f2 , c1 contribute to isospin breaking in O(2) f1accuracy of prediction O(10%) V.E. Lyubovitskij & A. Rusetsky, Phys. Lett. B 494(2000)9 V.E. Lyubovitskij et al., Phys. Lett. B 520(2001)204

  37. N scattering lengths a I R-98.01 - preliminary ! corrections  = (-7.22.9)% J. Gasser et al., Eur. Phys. J. C 26 (2003) 13   = (+0.60.2)% P. Zemp, thesis University of Bern 2004

  38. N scattering lengths a II a &a – ELT phenomenological analysis + multiple scattering Ericson et al. Phy.Scr.T87(2000)71 from (H+D) multiple scattering Thomas & Landau Phys.Rep.58(1980)121 DLT PT analysis Beane et al. Nucl.Phys.A 720(2003)399 from (H+D) • correction  = -7.22.9% • J. Gasser et al., • Eur. Phys. J. C 26 (2003) 13 R-98.1   = +0.60.2% P. Zemp, thesis Bern‘04 current algebraWeinberg, Tomozawa ‘66 N phase shift KH80 - - HBPT 3rd orderFettes, Meissner, Steininger NP A640(1998)199

  39. N coupling constant Goldberger- Miyazawa-Oehme (GMO) sum rule  1% 13.21 + 0.11 - 0.05  previous H + D exp. H.-Ch. Schröder et al., Eur. Phys. J. C 21 (2001) 473 1sHa-p-p 1sDa += a-p-p + a+p+p  a-p-p + a-n-n charge symmetry  Ericson, Loiseau & ThomasPhys. Rev. C 66, 014005 (2002) shift H+D R-98.01  13.89 + 0.23 14.110.20 - 0.11

  40. PIONIC DEUTERIUM 1s/1s 1s/1s D D. Chatellard et al. (1994)  2% 12% P.Hauser et al. (1998)

  41. D- hadronic shift 1s&Ns-wave isospin scattering lengths d  p + n corrections!a - p + a - n = (a1/2+2a3/2 ) /3 = 2 a+isoscalarscatt. length Deser formula SS single scattering DS double scattering (  60% ) HC higher orders AB absorptive corrections experiments  ad= - 0.0261  0.0005 / mD. Chatellard et al., NPA 625(1997)855 P. Hauser et al., PRC 58(1998)R1869  calculations  ada Beane, Bernard, Lee, Meissner, PR 57 (1998) 424 Ericson, Loiseau & Thomas, PR C 66, 014005 (2002) Beane, Bernard, Epelbaum, Meissner, Phillips NPA 720 (2003)399 Rusetski et al., in progress ...

  42. f0 N  H –p scattering at „rest“ 1sa -p  -p a ++a – 1s(a -p  o n)2 (a –) 2 D 1sa -p  -p + a - n - n a + 0 1s>> 0 d  p + n Meissner, Raha, Rusetski, Eur. Phys. J. C41 (2005) 213 f0 problem nuclei T / 3He with ... without external pions a +,a – e. g. 4He Baru, Haidenbauer,Hanhart, Niskanen, Eur. Phys. J. A16 (2003) 437

  43. 1. MOLECULAR POTENTIALS "Vesman“ mechanism for excited states:pnl + H2[(pp) njvp] eeK experimentR. Pohl et al., Hyp. Int. 138 (2001) 35theoryS.Hara et al. I.Shinamura quenching of p 2s via [(pp)p]ee formation V.I.Korobov, … X-ray transitions from slightly shifted bound states ? consequences for H (np  1s) transitions EX EX - E? (how many) bound states below dissociation limit of 4.5 eV ? Jonsell, Froelich and Wallenius for n=1,2,3 Phys. Rev A 59 (1999) 3440 ppµ ddµ X-ray / total  0.03  1 Lindroth, Wallenius and Jonsell Phys. Rev A 68 (2003) 032502 Kilic, Karr and Hilico to be published

  44. PIONIC DEUTERIUM energy calibration I Cl K 2.62 keV 15 min response function I Ne(7-6) 2.72 keV 12 h strong interaction D(2p-1s) 2.60 keV 15 h 1s = – 2.469  0.055 eV 1s = 1.093  0.129 eV P. Hauser et al., PR C 58 (1998)R1869

  45. LIGHT PIONIC ATOMS - A = 3, 4 1s/1s 1s/1s 3HeI.Schwanner et al.(1979) 10% 25% NP A 412 (1984) 253 T------ 4HeG.Backenstoss et al.(1974) 3% 7%

  46. SUMMARY PIONIC HYDROGEN ISOTOPES - TIME" DEPENDENCE ,   2006 X-rays identified ? 2006 Increase of precision to the 1% also for A=3,4 desirable ?

More Related