1 / 20

The Energy Cycle: ATP Production in Living Cells

Learn how living cells produce ATP through redox reactions and phosphorylation to power cellular work efficiently. Explore the ATP cycle and its role in energy coupling within an ecosystem.

branum
Download Presentation

The Energy Cycle: ATP Production in Living Cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ATP Production AP Biology

  2. Overview: Life Is Work • Living cells require energy from outside sources • Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other organisms that eat plants • Energy flows into an ecosystem as sunlight and leaves as heat • Photosynthesis generates O2 and organic molecules, which are used in cellular respiration • Cells use chemical energy stored in organic molecules to regenerate ATP, which powers work

  3. Adenosine Tri-Phosphate (ATP) • ATP is the energy unit of the cell. • ATP is composed of an Adeno. Group, a sugar group and three phosphates. • ATP is easily recycled. • The cell converts Adenosine Di-Phosphate (ADP) into ATP by the addition of a phosphate.

  4. An Overview of how ATP is Produced

  5. Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts Organic molecules CO2 + H2O + O2 Cellular respiration in mitochondria ATP ATP powers most cellular work Heat energy

  6. Redox Reactions: Oxidation and Reduction • The transfer of electrons during chemical reactions releases energy stored in organic molecules • This released energy is ultimately used to synthesize ATP

  7. The Principle of Redox • Chemical reactions that transfer electrons between reactants are called oxidation-reduction reactions, or redox reactions • In oxidation, a substance loses electrons, or is oxidized • In reduction, a substance gains electrons, or is reduced (the amount of positive charge is reduced)

  8. ATP powers cellular work by coupling exergonic reactions to endergonic reactions • A cell does three main kinds of work: • Chemical • Transport • Mechanical • To do work, cells manage energy resources by energy coupling, the use of an exergonic process to drive an endergonic one • Most energy coupling in cells is mediated by ATP

  9. ATP • ATP (adenosine triphosphate) is the cell’s energy shuttle • ATP is composed of: • ribose (a sugar) • adenine (a nitrogenous base) • Three phosphate groups

  10. Fig. 8-8 Adenine Phosphate groups Ribose

  11. The bonds between the phosphate groups of ATP’s tail can be broken by hydrolysis • Energy is released from ATP when the terminal phosphate bond is broken • This Third Phosphate bond contains LOTS of Energy • This release of energy comes from the chemical change to a state of lower free energy, not from the phosphate bonds themselves

  12. Fig. 8-9 P P P Adenosine triphosphate (ATP) H2O + P P P Energy + i Inorganic phosphate Adenosine diphosphate (ADP)

  13. How ATP Performs Work • The three types of cellular work are: • mechanical • transport • chemical • Each is powered by the hydrolysis of ATP • In the cell, the energy from the exergonic reaction of ATP hydrolysis can be used to drive an endergonic reaction

  14. Fig. 8-11 Membrane protein P P i Solute transported Solute (a) Transport work: ATP phosphorylates transport proteins ADP + ATP P i Vesicle Cytoskeletal track ATP Protein moved Motor protein (b) Mechanical work: ATP binds noncovalently to motor proteins, then is hydrolyzed

  15. Phosphorylation • ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant • The recipient molecule is now phosphorylated

  16. Phosphorylation • The process of Phosphorylation converts a relatively low energy compound (ADP) into a higher energy compound (ATP) • ADP (Adenosine Di-Phosphate)- Contains an Adenosine, a ribose group, and two Phosphate groups.

  17. Fig. 8-12 ATP + H2O Energy for cellular work (endergonic, energy-consuming processes) Energy from catabolism (exergonic, energy-releasing processes) ADP P + i

  18. The ATP Cycle • ATP can be produced from existing ADP molecules • A phosphate is added to ADP at the mitochondria. • Requires ATP synthase - A protein complex in the mitochondria that acts a molecular mill and converts ADP into ATP.

  19. Fig. 9-UN7 INTER- MEMBRANE SPACE H+ ATP synthase ADP + ATP P i MITO- CHONDRIAL MATRIX H+

  20. The Regeneration of ATP • ATP is a renewable resource that is regenerated by addition of a phosphate group to adenosine diphosphate (ADP). • Requires ATP synthase and H ions (from water.) • The energy to phosphorylate ADP comes from catabolic reactions in the cell. • The chemical potential energy temporarily stored in ATP can then be used to drive most cellular work.

More Related