1.03k likes | 1.43k Views
Chapter 8 Spectroscopic methods of structure determination. 结构测定的波谱方法. Introduction Ultraviolet Spectroscopy (UV) 紫外光谱 ---- 测定有机物中是否存在共轭双键和芳香族化合物 Infrared Spectroscopy (IR) 红外光谱 ---- 测定有机物中官能团。
E N D
Chapter 8Spectroscopic methods of structure determination 结构测定的波谱方法
Introduction Ultraviolet Spectroscopy (UV) 紫外光谱----测定有机物中是否存在共轭双键和芳香族化合物 Infrared Spectroscopy (IR)红外光谱----测定有机物中官能团。 Nuclear Magnetic Resonance Spectroscopy (NMR) 核磁共振谱----测定有机物中不同类型的氢或碳的数目和位置。(1H NMR and 13C NMR) Mass Spectrometry (MS)质谱----测定有机物的分子量。
The characteristics of spectroscopic determination Microscale sample (1 – 5 mg, 样品少) It need short time to determine sample(时间短) Identify structure very fast.(结构确认快而准) Most are nondestructive (多不破坏样品) 重点:了解简单原理, 简单识谱
Ultraviolet spectroscopy(紫外光谱, 15-13, p 666) • UV spectoscopy observes electronic transitions and provides information on the electronic bonding in the sample.
σ* σ→ σ* π* n→ σ* ΔE E n π→ π* UV π n→ π* σ 1) Spectral region of UV: 200-400nm 2) Ultraviolet light and electronic transition (紫外光与电子跃迁)
π→ π*:K带, 吸收峰强, 共轭双键增加, 向长波方向移动, B带, 苯的吸收带, 宽 230~270 nm, 中心254 nm E带, 把苯环看成乙烯键或共轭乙烯键跃迁引起的吸收带. n→ π*:R带, > 270 nm, 吸收峰较弱, C=O, C=N, -NO2
Absorptance π→ π*:K带 n→ π*:R带 Wavelength
增大 A compounds that contain a longer chain of conjugated double bonds absorbs light at a longer wavelength. 共轭体系增加, 吸收波长增大, 即吸收“红移”
β – Carotene 胡罗卜素 β – Carotene 胡罗卜素 Lycopene 番茄红素
酸式结构, 无色 碱式结构, 红色 酚酞
reference cell source 光源 Ir detector 检测仪 A λ Is recorder 记录仪 monochromator 单色器 sample cell 样品池 UV测定常用溶剂: CH3OH, CH3CH2OH
Lambert-Beer Rule 朗伯-比尔定律 UV principle A----absorbance 吸光度 ε--- molar extinction coefficient 摩尔消光系数 c----molar concentration of sample,mol/L l-------the length, cm 液层厚度 Is--- 透过样品的光强度 Ir ---透过空白样的光强度
4) Interpreting UV spectra (解谱) (1) 判断有无共轭体系存在,或有无芳烃、醛、酮、羧酸、芳胺等有机物。 每增加一个共轭双键,波长增加 30~40 nm; 每增加一个烷基取代基, 波长增加约 5 nm. See: Table 15-2 (p 671) (problem: 15-3, 15-22)
(2) 共轭链连有未共用电子对基团如:-NH2, -NR2, -OH, -OR, -SR, -Cl, -Br, -I,可产生p~π共轭,使化合物颜色加深,λmax 向长波方向移动-----把这样的基团称为助色基. 发色基; 记录格式 2,5-Dimethyl-2,4-hexadiene
logε ε λ/nm λ/nm 苯在己烷中的吸收光谱 联苯类化合物的紫外光谱图
280nm (ε13500); 295nm (ε27000) 顺式: 由于位阻,共轭不是太好,故波长短,ε小些 反式: 共轭效果好,故波长增加,ε增大
2. Infrared spectroscopy (IR, 红外光谱, 12-1~12, p 490-519) • IR spectroscopy observes the vibrations of the bonds and provides evidence of the functional groups present.
Spectral region of IR: • 中红外: λ2.5-25 μm (波数4000~400 cm-1)
2) Molecular vibrations and IR spectroscopy Stretching vibration 伸缩振动 symmetric stretching antisymmetric stretching Bending vibration 弯曲振动 Rocking Twisting Scissoring wagging
IR principle like a spring ν:振动频率 k:化学键的力常数 μ:折合质量 Frequency: decreases with increasing atomic weight; increase with bonding energy. 键能越大,折合质量越小,频率越高,峰出现在高波数区.
Frequency range of functional groups 1500-3600, functional group region 官能团区 <1500, fingerprint region 指纹区
IR-active and IR-inactive vibration • A polar bond is usually IR-active. • A nonpolar bond in a symmetrical molecule will absorb weakly or not at all. 只有分子振动时偶极矩(dipole moment)发生变化的振动(Δμ≠0)才有红外吸收。偶极矩μ=δ×d 偶极矩变化越大,红外吸收越强. 偶极矩变化与以下因素有关: 电负性(电负性差别大,吸收强)、 振动方式(不对称伸缩>对称伸缩>弯曲振动) 分子的对称性(对称性差,吸收峰强) 氢键(使吸收峰变宽变强) problem 12-2
3) Measurement of the IR spectrum Infrared spectrometer (红外光谱仪) 红外测定方法: 1. KBr disc (KBr压片法) 2. 液膜法(NaCl盐片) 3 石腊油法 A Nicolet 800 FT-IR, 400 to 4000 cm-1)
Characteristic absorptions of common functional groups(常见官能团的特征吸收) hydrocarbons (烃): stretching frequency(cm-1)
Alkane CH3(CH2)6CH3 CH3: 1380
Alkene CH3(CH2)3CH=CH2
benzene =C-H toluene Aromatic compounds
Ethers C-O-C 1150-1070 [strong] 1120
carbonyl compounds (羰基化合物): Usually, it’s the strongest IR signal.
Amide Acetamide, 乙酰胺 3348, 3173 N-H 1681 C=O
Carbon - Nitrogen Stretching • C - N 1200 cm-1. • C = N 1660 cm-1 and is much stronger than the C = C absorption in the same region. • C N absorbs strongly just above 2200 cm-1. The alkyne C C signal is much weaker and is just below 2200 cm-1 .
Interpretation of the IR spectra (红外光谱解析) 红外光谱主要是获得有机物官能团信息. (1) 吸收峰的位置、强度和形状。 (2)先特征峰,后一般峰。先强峰,后次强峰,再中强峰,同时注意峰形,宽,尖,单峰或双峰。相关峰。 与标准图谱对照可以确认化合物。
C5H10O 1716 3-pentanone CH3CH2COCH2CH3 Diethyl ketone