1 / 1

Tetra Point Wetting at the Free Surface of a Binary Liquid Metal

Tetra Point Wetting at the Free Surface of a Binary Liquid Metal Patrick Huber , Oleg Shpyrko, Peter Pershan, Holger Tostmann*, Elaine DiMasi**, Ben Ocko**, Moshe Deutsch*** Department of Physics, Harvard University, Cambridge MA, U.S.A.

Download Presentation

Tetra Point Wetting at the Free Surface of a Binary Liquid Metal

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tetra Point Wetting at the Free Surface of a Binary Liquid Metal Patrick Huber, Oleg Shpyrko, Peter Pershan, Holger Tostmann*, Elaine DiMasi**, Ben Ocko**, Moshe Deutsch*** Department of Physics, Harvard University, Cambridge MA, U.S.A. *University of Florida, Gainesville, FL, ** Brookhaven National Lab, Upton, NY, *** Bar-Ilan University, Tel Aviv Abstract We present x-ray reflectivity measurements from the free surface of a gallium-bismuth (Ga-Bi) alloy over a temperature range from T = 200°C up to T=280°C. We found a continuous formation of a wetting film at the surface driven by the phase transition of first order in the bulk at the monotectic temperature TM = 222°C. The observed wetting scenario is closely related to triple point wetting known from one component systems and properly described as complete wetting at a solid-liquid-liquid-vapor tetra point [1,2]. Our measurements of the microscopic structure of the wetting film in combination with the known bulk thermodynamics allow calculations of liquid-liquid interfacial tensions and the extraction of information on the surface potential. X-ray reflectivity measurements Microscopic View on Tetra Point Wetting • Bulk thermodynamics • Binary liquid metal with miscibility gap and monotectic point • Phase diagram measured with calorimetric methods by P. Predel [3] • Free Energy G(c,T) available from CALPHAD project [4] Bulk structure  surface structure regime III: Gibbs adsorbed monolayer of pure Bi. regime II: Thick wetting film of the heavier Bi-rich phase intrudes between the low density, Ga-rich phase and the vapor phase in defiance of gravity. [5,6] regime I: Gibbs adsorbed monolayer of pure Bi. [6,7] • Transition pinned at bulk first order transition (monotectic point). • Correctly described as complete wetting at a solid-liquid-liquid-vapor tetra point. [2] (Phenomenon related to well known triple point wetting for one component systems. [1]) • Experimental data indicate film structures dominated by density gradients. - In contrast to the frequently used “homogeneous slab” models. - but in agreement with density functional calculations for wetting in binary systems at hard walls. [7] • Preliminary analysis suggests: short-range, screened Coulomb interactions + long-range, van-der-Waals like dispersion forces are necessary to explain evolution of profiles confirming modern treatments of interactions in metals. [11] • Wetting scenario in Ga-Bi analogous to behavior in Ga-Pb system. [12] Gradient Theory for the liquid-liquid interface [8] References [1] R. Pandit, M. E. Fisher, Physical Review Letters 51, 1772 (1983) [2] S. Dietrich and M. Schick, Surface Science 382, 178 (1997) [3]P. Predel, Zeitschrift für Physikalische Chemie Neue Folge 24, 206 (1960) [4] L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, NY (1970) [5] D. Nattland, S. C. Muller, P. D. Poh, Freyland W., Journal of Non-Crystalline Solids 207, 772 (1996) [6]H. Tostmann, E. DiMasi, O. G. Shpyrko, P.S. Pershan, B.M. Ocko, M.Deutsch, Physical Review Letters 84, 4385 (2000) [7]N. Lei, Z. Q. Huang, and S. A. Rice, Journal of Chemical Physics 104, 4802 (1996) [8] H.T. Davis, Stastical Mechanics of Phases, Interfaces, and Thin Films, Wiley-VCH, NY (1996) [9] H. Kreuser and D. Woermann, Journal of Chemical Physics 98, 7655 (1993) [10] M. Merkwitz, J. Weise, K. Thriemer, Hoyer W., Zeitschrift Fur Metallkunde 89, 247 (1998) [11] N. W. Ashcroft, Philosophical Transactions of the Royal Society of London Series a 334, 407 (1991) [12] P. Wynblatt and D. Chatain, Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 102, 1142 (1998) 

More Related