230 likes | 262 Views
Material models. Work-hardening. mechanical-threshold-strength (MTS). Different Models. M icrostructural Metal Plasticity (MMP). Nes-Marthinsen-Holmedal. Kocks. Nes model. 3 internal variable model (3IVM). MTS Model. 1 microstructural parameter
E N D
Material models Work-hardening
mechanical-threshold-strength (MTS) Different Models Microstructural Metal Plasticity(MMP) Nes-Marthinsen-Holmedal Kocks Nes model 3 internal variable model (3IVM)
MTS Model • 1 microstructural parameter • total dislocation density => r (The way they are arranged is not considered) Dynamic stress Work hardening Storage of dislocations Dynamic recovery
“Alflow” - Erik Nes - NTNUwork-hardening and dynamic recovery Principle and inputs
Alflow: model principle • From Erik Nes - NTNU • [E. Nes, ‘Modelling of work-hardening and stress saturation in FCC metals', Progress in Materials Science, Vol. 41 (1998) pp.129-193] • Only for pure metals • For work hardening and dynamic recovery: any strain rate and temperature • Describes the 4 stages of work-hardening
j d ri NTNU model (ALFLOW) • 3 microstructural parameters • cell size => d • dislocation density within the cell => ri • small strain: • cell wall thickness => h • wall dislocation density => rb • large strain: sub-boundary misorientation => j
Alflow: model description small strain large strain • 3 microstructural parameters sub-boundary misorientation j cell wall thickness h cell size d dislocation density within the cell ri wall dislocation density rb
WORK-HARDENING (V) II IV III qIII0 qII qIV ts tIII tIII* tIV tIIIs t
II to III (V) high T° II III IV t ts tIV tIII* tIII Def becomes inhomogeneous (locolised slip => shear banding) g Recovery becomes significant g saturation Cells more or less equiaxed Pancake like structure saturates g
II to III (V) high T° II III IV g f h g j jIV jIII g
II to III (V) high T° II III IV S Ssc SIV g g g
NTNU model (ALFLOW) • 3 microstructural parameters • cell size => d • dislocation density within the cell => ri • small strain: • cell wall thickness => h • wall dislocation density => rb • large strain: sub-boundary misorientation => j Dispersoids bypass l: particle spacing Dynamic stress
Alflow: model description • Flow stress Dynamic stress Neglected work -hardening dynamic recovery
General principle of work-hardening • Athermal storage of dislocations: • In cell interiors • In old boundaries • Forming new boundaries Dislocation slip length: Storage probability of a moving dislocation Dislocation in new boundaries: Storage probability of a moving dislocation in a new boundary Fraction of dislocation loops trapped in old boundaries
Alflow: input • Material constant (x5) • From literature • Burgers vector: 2.86 A • Shear Modulus: GPa • Self diffusion activation energy: 120 kJ/mol • Debye frequency: • Model Parameters (x13) • To be determined • Stress - microstructure constants: a1, a2 • Geometric constant: k • Scaling constants: qb, qc, qh, qIV, • Storage parameters: C, SIV • Dynamic recovery parameters: Bd, xd, Br, xr
Alflow: input • Microstructure variable (x2) • Depend on process history • Initial microstructure: r0, d0, ri0, h0, rb0, • Saturation stress: js • Process parameters • From FEM • Temperature • Strain rate Total: 19 input parameters
Alflow: next steps • Precipitate and solute effects on work-hardening grain size + particles • Precipitate effect on the flow stress Dispersoids bypass l: particle spacing
Alflow: next steps Grain size
Conclusion Alflow • More consistent theoretical approach • More realistic microstructure prediction • Code available • Possibility to integrate into FEM 3IVM • Validated for a larger temperature range and composition Future improvements • Combined effect of Mg, Mn, Si • Shearable particles