440 likes | 530 Views
Ray tracing and stability analysis of parametric systems. Fabrice LE BARS. Introduction Ray tracing Stability analysis of a parametric system Conclusion. > Plan. Introduction. Introduction.
E N D
Ray tracing and stability analysis of parametric systems Fabrice LE BARS
Introduction • Ray tracing • Stability analysis of a parametric system • Conclusion > Plan 10/06/2009 - 2
Introduction 10/06/2009 - 3
Introduction • Goal : Show similarities between 2 problems apparently different : ray tracing and parametric stability analysis • Use of interval analysis 10/06/2009 - 4
Ray tracing 10/06/2009 - 5
Ray tracing • Description • Ray tracing, ray casting • 3D scene display • Method : build the reverse light path starting from the screen to the object 10/06/2009 - 6
Ray tracing • Hypothesis • Objects are defined by implicit functions • The eye is at the origin of a coordinate space R(O,i,j,k) and the screen is at z=1 • The screen is not in the object Screen Eye Object Ray 10/06/2009 - 7
Ray tracing • Problem description • A ray assiociated with the pixel satisfies 10/06/2009 - 8
Ray tracing • Problem description • The point is in the object if • A pixel displays a point of the object if the associated ray intersects the object 10/06/2009 - 9
Ray tracing The ray associated with intersects the object if with 10/06/2009 - 10
Ray tracing • Light effects handling • Realism => illumination model • Phong : needs the distance from the eye to the object • We need to compute for each pixel : 10/06/2009 - 11
Ray tracing • Computation of • If Then Moreover, if We can use a dichotomy to get 10/06/2009 - 12
Ray tracing • Computation of • Interval computations are used to find • A dichotomy finds 10/06/2009 - 13
Ray tracing • Parametric version • now depends on • If Then Moreover if We can use a dichotomy to get for each 10/06/2009 - 14
Ray tracing • From to 10/06/2009 - 15
Ray tracing 10/06/2009 - 16
Stability analysis of a parametric system 10/06/2009 - 17
Stability analysis of a parametric system • Stability where is retrieved from the Routh table (Routh) 10/06/2009 - 18
Stability analysis of a parametric system • stability (Routh) 10/06/2009 - 19
Stability analysis of a parametric system • Example : Ackermann is stable if 10/06/2009 - 20
Stability analysis of a parametric system • Stability degree 10/06/2009 - 21
Stability analysis of a parametric system • Similarities with ray tracing 10/06/2009 - 22
Stability analysis of a parametric system 10/06/2009 - 23
Conclusion 10/06/2009 - 24
Conclusion • Ray tracing and stability degree drawing of a linear system are similar problems • A common algorithm based on intervals and dichotomy has been proposed 10/06/2009 - 25
References • L. Jaulin. Solution globale et garantie de problèmes ensemblistes; Application à l'estimation non linéaire et à la commande robuste. PhD thesis, Université Paris XI Orsay, 1994. • S. Bazeille. Vision sous-marine monoculaire pour la reconnaissance d'objets. PhD thesis, Université de Bretagne Occidentale, 2008. • J. Flórez. Improvements in the ray tracing of implicit surfaces based on interval arithmetic. PhD thesis, Universitat de Girona, 2008. • L. Jaulin, M. Kieffer, O. Didrit et E. Walter, Applied interval analysis, Springer-Verlag, London, Great Britain, 2001. • L. Jaulin, E. Walter, O. Lévêque et D. Meizel, "Set inversion for chi-algorithms, with application to guaranteed robot localization", Math. Comput Simulation, 52, pp. 197-210, 2000. • J. Ackermann, "Does it suffice to check a subset of multilinear parameters in robustness analysis?", IEEE Transactions on Automatic Control, 37(4), pp. 487-488, 1992. • J. Ackermann, H. Hu et D. Kaesbauer, "Robustness analysis: a case study", IEEE Transactions on Automatic Control, 35(3), pp. 352-356, 1990. 10/06/2009 - 26
Ray tracing 10/06/2009 - 27
Ray tracing => a = d3 10/06/2009 - 28
Ray tracing => b = d2 10/06/2009 - 29
Ray tracing • Division in d 10/06/2009 - 30
Ray tracing • Division in d 10/06/2009 - 31
Ray tracing • Division in d 10/06/2009 - 32
Ray tracing • Division in p 10/06/2009 - 33
Ray tracing • Division in p 10/06/2009 - 34
Ray tracing • Division in p 10/06/2009 - 35
Ray tracing • Division in p 10/06/2009 - 36
Ray tracing • Division in p 10/06/2009 - 37
Ray tracing • Division in p and in d 10/06/2009 - 38
Ray tracing 10/06/2009 - 39
Ray tracing • Several objects display handling • We apply the previous algorithm for the function : • Indeed, we have to consider only the first object crossed by the ray 10/06/2009 - 40
Ray tracing 10/06/2009 - 41
Stability analysis of a parametric system • Stability degree of an invariant linear system of caracteristic polynomial P(s) : • We consider an invariant linear system parametized with a vector of parameter p : 10/06/2009 - 42
Stability analysis of a parametric system • The stability degree becomes : • With the polynomial is stable if (Routh) : 10/06/2009 - 43
Stability analysis of a parametric system • If we note We get • Therefore, the stability degree is : 10/06/2009 - 44