1 / 65

Multi-Dimensional Data Visualization

Multi-Dimensional Data Visualization. CS 5764: Information Visualization Chris North. Review. What is the Visualization Pipeline? What are the 2 steps of Visual Mapping? What is Shneiderman’s Info Vis Mantra? What are Cleveland’s rules?. Where are we?. Tabular (multi-dimensional)

brien
Download Presentation

Multi-Dimensional Data Visualization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multi-Dimensional Data Visualization CS 5764: Information Visualization Chris North

  2. Review • What is the Visualization Pipeline? • What are the 2 steps of Visual Mapping? • What is Shneiderman’s Info Vis Mantra? • What are Cleveland’s rules?

  3. Where are we? Tabular (multi-dimensional) Spatial & Temporal 1D / 2D 3D Networks Trees Graphs Text & Documents Fundamentals Navigation strategies Overview strategies Interaction techniques Design Development Evaluation

  4. The Simple Stuff • Univariate • Bivariate • Trivariate

  5. Univariate • Dot plot • Bar chart (item vs. attribute) • Tukey box plot • Histogram

  6. Bivariate • Scatterplot

  7. Trivariate • 3D scatterplot, spin plot • 2D plot + size (or color…)

  8. Multi-Dimensional Data • Each attribute defines a dimension • Small # of dimensions easy • Data mapping, Cleveland’s rules • What about many dimensional data? n-D What does 10-D space look like?

  9. Map n-D space onto 2-D screen • Visual representations: • Complex glyphs • E.g. star glyphs, faces, embedded visualization, … • Multiple views • E.g. plot matrices, brushing histograms, Spotfire, … • Non-orthogonal axes • E.g. Parallel coords, star coords, … • Tabular layout • E.g. TableLens, … • Interactions: • Dynamic Queries • Brushing & Linking • Selecting for details, …

  10. Glyphs: Chernoff Faces • 10 Parameters: • Head Eccentricity • Eye Eccentricity • Pupil Size • Eyebrow Slope • Nose Size • Mouth Vertical Offset • Eye Spacing • Eye Size • Mouth Width • Mouth Openness • http://hesketh.com/schampeo/projects/Faces/chernoff.html

  11. Glyphs: Stars d1 d2 d7 d3 d6 d4 d5

  12. Multiple Views withBrushing-and-linking

  13. Scatterplot Matrix • All pairs of attributes • Brushing and linking • http://noppa5.pc.helsinki.fi/koe/3d3.html

  14. … on steroids

  15. Different Arrangements of Axes • Axes are good • Lays out all points in a single space • “position” is 1st in Cleveland’s rules • Uniform treatment of dimensions • Space > 3D ? • Must trash orthogonality

  16. Parallel Coordinates • Inselberg, “Multidimensional detective” (parallel coordinates)

  17. Parallel Coordinates • Forget about Cartesian orthogonal axes • (0,1,-1,2)= x y z w 0 0 0 0

  18. Star Plot 1 8 2 7 3 4 6 5 Parallel Coordinates with axes arranged radially

  19. Star Coordinates • Kandogan, “Star Coordinates”

  20. Star Coordinates CartesianStar Coordinates P=(v1,v2,v3,v4,v5,v6,v7,v8) P=(v1, v2) d1 d1 d8 d2 v3 v4 p v2 v1 v5 v2 d7 d3 d2 p v1 v8 v6 v7 d6 • Mapping: • Items → dots • Σ attribute vectors → (x,y) d4 d5

  21. Analysis

  22. Table Lens • Rao, “Table Lens”

  23. FOCUS / InfoZoom • Spenke, “FOCUS”

  24. VisDB & Pixel Bar Charts • Keim, “VisDB”

  25. Comparison of Techniques

  26. Comparison of Techniques • ParCood: <1000 items, <20 attrs • Relate between adjacent attr pairs • StarCoord: <1,000,000 items, <20 attrs • Interaction intensive • TableLens: similar to par-coords • more items with aggregation • Relate 1:m attrs (sorting), short learn time • Visdb: 100,000 items with 10 attrs • Items*attrs = screenspace, long learn time, must query • Spotfire: <1,000,000 items, <10 attrs (DQ many) • Filtering, short learn time

  27. Scaling up further • Beyond 20 dimensions? • Interaction • E.g. Offload some dims to Dynamic Query sliders, … • Reduce dimensionality of the data • E.g. Multi-dimensional scaling (MDS) …later • Visualize features of the dimensions, instead of the data • E.g. rank-by-feature

  28. Rank-by-Feature • Seo, et al.

  29. Combining multiple data types • Multi-Dimensional + GeoSpatial • DataMaps, Virginia Tech

  30. Exercise • Demographics data: • Multi-Dimensional attributes(multiple measures over time) • Geospatial map • Static visual representation, no interaction(must visually relate all attributes to geospatial) • Design choices?

  31. 1. Small Multiples Multiple views: 1 attribute / map 1976

  32. 2. Embedded Visualizations Complex glyphs: For each location, show vis of all attributes

  33. Multi-DimensionalFunctions cs5764: Information Visualization Chris North

  34. Multi-Dimensional Functions • y = f(x1, x2, x3, …, xn) • Continuous: • E.g. y = x13 + 2x22 - 9x3 • Discrete: • xi are uniformly sampled in a bounded region • E.g. xi = [0,1,2,…,100] • E.g. measured density in a 3D material under range of pressures and room temperatures.

  35. Relations vs. Functions • Relations: • R(A, B, C, D, E, F) • All dependent variables (1 ind.var.?) • Sparse points in multi-d dep.var. space • Functions: • R(A, B, C, D, E, F, Y) : Y=f(A, B, C, D, E, F) • Many independent variables • Defined at every point in multi-d ind.var. space (“onto”) • Huge scale: 6D with 10 samples/D = 1,000,000 data points

  36. Multi-D Relation Visualizations… • Don’t work well for multi-D functions • Example: • Parallel coords • 5D func sampled on 1-9 for all ind.vars.

  37. Typically want to encode ind.vars. as spatial attrs

  38. 1-D: Easy • b = f(a) • a  x • b  y b a

  39. 2-D: Easy • c = f(a, b) • Height field: • a  x • b  y • c  z c b a

  40. 2-D: Easy • c = f(a, b) • Heat map: • a  x • b  y • c  color b a c

  41. 3-D: Hard • d = f(a, b, c) • Color volume: • a  x • b  y • c  z • d  color • What’s inside? c b a

  42. 4D: Really Hard • y = f(x1, x2, x3, x4, …, xn) • What does a 5D space look like? • Approaches: • Hierarchical axes (Mihalisin) • Nested coordinate frames (Worlds within Worlds) • Slicing (HyperSlice) • Radial Focus+Context (PolarEyez, Sanjini)

  43. Hierarchical Axes • 1D view of 3D function: (Mihalisin et al.) f(x1, x2, x3) x3 x2 x1

  44. as in TableLens 5D 9 samp/D

  45. Hierarchical Axes • 2D view of 4D function (using heat maps) • y = f(x1, x2, x3, x4) • Discrete: xi = [0,1,2,3,4] x3 x1 x2 y = f(x1,x2,0,0) as color x4

  46. Hierarchical Axes • Scale? • 6d = 3 levels in the 2d approach • 10 samples/d = 1,000,000 data points = 1 screen • For more dimensions: • zoom in on “blocks” • reorder dimensions

  47. 5D9 sample/D

  48. Nested Coordinate Frames • Feiner, “Worlds within Worlds”

  49. Slicing • Van Wijk, “HyperSlice”

More Related