130 likes | 307 Views
Quantum Robot Analysis and entanglement. Classic Braitenberg. Fear. Aggression. A. B. H. P. Q. Programmable Braitenberg. Ultrasonic Sensor. A = Left Light Sensor. B = Right Light Sensor. Circuit Implemented by Program. Q = Motor for Right Wheel. P = Motor for Left Wheel.
E N D
Classic Braitenberg Fear Aggression
A B H P Q Programmable Braitenberg Ultrasonic Sensor A = Left Light Sensor B = Right Light Sensor Circuit Implemented by Program Q = Motor for Right Wheel P = Motor for Left Wheel Sound/Touch Sensor
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 00 00 00 00 00 01 01 01 01 01 01 1 10 10 10 10 10 10 √2 11 11 11 11 11 11 A P H Q B 1 0 1 0 0 1 0 1 0 1 0 -1 1 0 -1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 Selected Circuits Feynman Gate Direct Connection Swap Gate A A A P P P Q Q Q B B B Identity Matrix Feynman+Swap Einstein-Podolsky-Rosen And-OR Gates A A P P Q Q B B
Representing Gates via Matrices Input Output
00 01 10 11 00 01 10 11 00 00 01 01 10 10 11 11 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 Using Binary Gates Feynman Gate And-OR Gates A A P P Q B Q B This behavior is deterministic because it can be determined how the robot will react to a given input.
Using Quantum Gates Hadamard Hadamard Input A=0 Output A = P H X Which in Dirac Notation is, Which after Measurement means, ½ probability of ‘0’ & ½ probability of ‘1’
Entanglement Example H P A Q B
00 01 10 11 00 1 01 √2 10 11 1 0 1 0 0 1 0 1 1 0 -1 0 0 1 0 -1 Entanglement Example – Step 1 Hadamard Hadamard in parallel with wire A P H A P H Q B = Wire A P
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 00 00 00 1 01 01 01 01 1 √2 10 10 10 10 √2 11 11 11 11 1 0 1 0 0 1 0 1 1 0 -1 0 0 1 0 -1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 -1 1 0 -1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 Entanglement Example – Step 2 Einstein-Podolsky-Rosen Feynman Gate A P H A Q P B Q B = X
00 01 10 11 00 00 01 01 1 1 10 10 √2 √2 11 11 1 0 1 0 0 1 0 1 0 1 0 -1 1 0 -1 0 Putting it together Vector ‘I’ 0 1 0 0 Selected Combination A B H Matrix ‘M’ P Q Measurement Vector ‘O’ 0 1 1 0 Either the robot will turn left or turn right with equal probability. O = M * I
00 01 10 11 00 00 01 01 1 1 10 10 √2 √2 11 11 1 0 1 0 0 1 0 1 0 1 0 -1 1 0 -1 0 Another example of entanglement This robot will never turn left or right although is still probabilistic. This is demonstration of entanglement. Will never detonate a bomb. Vector of inputs in a room with no light 1 0 0 0 Selected Combination A B H Matrix ‘M’ P Q Measurement Vector ‘O’ 1 0 0 1 Either the robot will go forward or stop with equal probability. O = M * I