630 likes | 2.25k Views
Vierecke. Mit diesem Programm kannst du ein Viereck einordnen und benennen! (gilt für Vierecke ohne „einspringende Ecken“). Lern- plattform. weiter. Schau dein Viereck genau an: hat es 4 gleich lange Seiten?. Ja. Nein. Dein Viereck hat also 4 gleich lange Seiten.
E N D
Vierecke Mit diesem Programm kannst du ein Viereck einordnen und benennen! (gilt für Vierecke ohne „einspringende Ecken“) Lern- plattform weiter
Schau dein Viereck genau an: hat es 4 gleich lange Seiten? Ja Nein
Dein Viereck hat also 4 gleich lange Seiten. Hat es auch 4 rechte Winkel? Ja Nein Hilfe
rechter Winkel Erklärung:Diese beiden Strecken bilden beim Schnittpunkt einen rechten Winkel. zurück
Quadrat Eigenschaften: • 4 gleich lange Seiten • 4 rechte Winkel • Diagonalen stehen rechtwinklig zueinander • Diagonalen werden gegenseitig halbiert • achsensymmetrisch(4 Achsen) • punktsymmetrisch weiter
Rhombus Eigenschaften: • 4 gleich lange Seiten • gegenüberliegende Winkel sind gleich gross • Diagonalen stehen rechtwinklig zueinander • Diagonalen werden gegenseitig halbiert • achsensymmetrisch(2 Achsen = Diagonalen) • punktsymmetrisch weiter
Dein Viereck hat also nicht 4 gleich lange Seiten. Hat es aber dafür 4 rechte Winkel? Ja Nein Hilfe
rechter Winkel Erklärung:Diese beiden Strecken bilden beim Schnittpunkt einen rechten Winkel. zurück
Rechteck Eigenschaften: • je 2 gleich lange Seiten, einander gegenüberliegend und parallel zueinander • 4 rechte Winkel • Diagonalen sind gleich lang • Diagonalen halbieren sich gegenseitig • achsensymmetrisch ( 2 Achsen) • punktsymmetrisch weiter
Dein Viereck hat also weder 4 gleich lange Seiten noch vier rechte Winkel. Ist es achsensymmetrisch? Ja Nein Hilfe
achsensymmetrisch Erklärung: zurück
Dein Viereck hat also weder 4 gleich lange Seiten noch 4 rechte Winkel, ist dafür aber achsensymmetrisch. Ist die Symmetrieachse eine Diagonale des Vierecks? Ja Nein Hilfe
Diagonale Erklärung: zurück
Drachen Eigenschaften: • je 2 aneinander angrenzende Seiten sind gleich lang • 2 gegenüberliegende Winkel sind gleich gross • Diagonalen stehen rechtwinklig zueinander • Die eine Diagonale halbiert die andere • 1 Symmetrieachse (Diagonale) weiter
gleichschenkliges Trapez Eigenschaften: • 2 Seiten sind gleich lang • die andern beiden Seiten sind parallel zueinander • je 2 nebeneinander liegende Winkel sind gleich gross • die beiden Diagonalen sind gleich lang • 1 Symmetrieachse weiter
Dein Viereck hat also weder 4 gleich lange Seiten noch vier rechte Winkel und ist auch nicht achsensymmetrisch. Ist das Viereck punktsymmetrisch? Ja Nein Hilfe
punktsymmetrisch Erklärung: zurück
Parallelogramm Eigenschaften: • je 2 gleich lange Seiten, die einander gegenüber liegen • je 2 Seiten sind parallel zueinander • gegenüberliegende Winkel sind gleich gross • Diagonalen werden gegenseitig halbiert • punktsymmetrische Figur weiter
Dein Viereck ist also weder achsen- noch punktsymmetrisch. Verlaufen aber zwei der vier Seiten parallel zueinander? Ja Nein Hilfe
parallel Erklärung: zurück
Trapez Eigenschaften: • 2 Seiten verlaufen parallel zueinander weiter
Dein Viereck hat also keine Symmetrieeigenschaften und auch keine parallelen Seiten. Wird eine der beiden Diagonalen von der anderen halbiert? Ja Nein Hilfe
Diagonale Erklärung: zurück
schiefer Drachen Eigenschaften: • die eine Diagonale halbiert die andere weiter
Bis jetzt hat dein Viereck gar keine speziellen Eigenschaften aufgewiesen. Hat es aber vielleicht einen Umkreis? Ja Nein Hilfe
Umkreis Erklärung: zurück
Sehnenviereck Eigenschaften: • besitzt einen Umkreis weiter
Bis jetzt hat dein Viereck überhaupt keine speziellen Eigenschaften gezeigt. Letzte Chance: Hat dein Viereck einen Inkreis? Ja Nein Hilfe
Inkreis Erklärung: zurück
Tangentenviereck Eigenschaften: • besitzt einen Inkreis weiter
allgemeines Viereck Eigenschaften: • unregelmässiges Viereck! weiter
Wie geht es weiter? Willst du nochmals ein Viereck benennen? Willst du auf eine Übersichtsseite mit allen Vierecken gelangen? Willst du deine Vierecksarbeit beenden?
Übersicht über die Vierecke Quadrat Rechteck Rhombus gleichschenkl. Trapez Parallelogramm Drachen Tangentenviereck schiefer Drachen Sehnenviereck Trapez weiter allg. Viereck