230 likes | 353 Views
10 th RHESSI Workshop Working Group 4. High resolution observations of solar flares using the ground-based telescopes Yan Xu SWRL/NJIT. 2010 August 04. What is unique of our data sets: High Order AO correction (AO-76) Highest spatial/temporal resolution
E N D
10th RHESSI Workshop Working Group 4 High resolution observations of solar flares using the ground-based telescopes Yan Xu SWRL/NJIT 2010 August 04
What is unique of our data sets: High Order AO correction (AO-76) Highest spatial/temporal resolution First NIR continuum observation 2010 August 04
Origin of the White-Light Emission: Direct Heating of Non-thermal Particle Beam: Najita & Orrall 1970, Aboundarham & Hénoux 1986a Chromospheric Back-warming: Hudson 1972, Metcalf et al., 1990a&b, Ding et al. 2003 H- emission: Ding et al. 2003 Review by Metcalf et al., 1990b Prediction of NIR Continuum Radiation: Hudson 1972, Far-Infrared > 20 m Ohki & Hudson 1975, IR > 1 m 2010 August 04
NIR: 1560 nm 2.5 nm 91.2" x 91.2 " October 29 122.2 " x 122.2 " November 2 Exposure = 13 ms Cadence = 30 frames/second, October 29 Cadence = 2 seconds, November 2 Visible: 520 nm 26 nm 81" x 81 " Exposure = 4 ms Cadence = 30 frames/second 100 frames/minute G-band: 430.5 nm 0.5 nm 72" x 72 " Exposure = 2 ms Cadence = 2 seconds 2010 August 04
RHESSI HXR contours (blue) correspond to the 50 – 100 keV channel with 60-second integration. The local NIR intensity maxima are shown in red. Two flare ribbons are correlated with strong HXR kernels. HXR contour levels are drawn at 0.17, 0.25, 0.60, and 0.80 of the maximum intensity, except for the first two frames, where they correspond to 0.7 and 0.8 for the first frame and 0.4, 0.6, and 0.8 for the second, when the HXR kernels were weaker. 2010 August 04
Color-encoded NIR difference images showing the temporal evolution of the flare ribbons from 20:40~UT to 20:47~UT. The background is an MDI line-of-sight magnetogram. 2010 August 04
Oct. 29, 2003 Nov. 02, 2003 MLC: Core emission ALC: Halo emission 1. Delay of ALC relative to MLC 2. MLC HXR 3. HXR up to 800keV 2010 August 04
30 frames/second 2010 August 04
NEW 30 frames/second 2010 August 04
Image_i(i=1~50) – Image_a(20:38:08UT) 2010 August 04
Image_i (I = 2~50) – Image_1 2010 August 04
1. G-band kernel: >100* aresec2 for an X9 flare (Wang 2009) 2. A typical UV area ~ 100 arcsec2 (Fletcher et al. 2007) 3. Dennis and Pernak, 2009 2003 Mar 18 X1.5 50-100 2010 August 04
1. G-band kernel: >100* aresec2 for an X9 flare (Wang 2009) 2. A typical UV area ~ 100 arcsec2 (Fletcher et al. 2007) 3. Dennis and Pernak, 2009 2003 Mar 18 X1.5 50-100 2010 August 04
C_halo ~ 1/3 C_core = 8% Most recent numerical simulation ~13% (Cheng et al. 2009), electron flux ~ 1011 erg cm-2 s-1 2010 August 04
GLOBAL Hα NETWORK (GHN) 2010 August 04
GLOBAL Hα NETWORK (GHN) Provide daily images from all nine stations Provide 1 min & 1" images from BBSO, KSO and YNAO Database (1.1 million imgs ~ 9TB ): 1. BBSO 2001/03/08 ~ 2009/05/29 total 307,066 frames 2. KSO 2000/07/20 ~ 2009/01/10 total 601,989 frames 3. YNAO 2002/01/01 ~ 2008/12/10 total 207,164 frames http://swrl.njit.edu/ghn_web/data_request/data_request.htm 2010 August 04
GLOBAL Hα NETWORK (GHN) http://swrl.njit.edu/ghn_web/data_request/data_request.htm 2010 August 04
Summary: • Different mechanisms for core and halo WL emission; • WL source sizes indicating 3D magnetic configuration; • More observations in optical wavelengths are scheduled, especially with high spatial/temporal resolution. • Prospective to RHESSI: • Images or LCs <1s • New imaging tech. 2010 August 04
Thank You! 2010 August 04