1 / 42

Hot and Dense QCD Matter and Heavy-Ion Collisions

Hot and Dense QCD Matter and Heavy-Ion Collisions. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA MLL Colloquium TU M ünchen , 22.10.09. = g 2 /4 p.  Quantum Chromo Dynamics: “ strong” coupling for Q < 2GeV ( r > 0.1fm )

brinda
Download Presentation

Hot and Dense QCD Matter and Heavy-Ion Collisions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hot and Dense QCD Matter and Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA MLL Colloquium TU München, 22.10.09

  2. = g2/4p •  Quantum Chromo Dynamics: • “strong” coupling for Q < 2GeV (r > 0.1fm) • QCD vacuum filled by condensates “constituent” quark mass 1.) Introduction:Pillars of the Strong Force u • Stable Matter:u , d , e- • mu,d ≈ 5-10 MeV • But: u d • quarks “glued” together►Confinement • proton massMp= 940 MeV >> 3mq ≈ 20 MeV • ► Mass Generation(>95% visible mass)

  3. - • ‹0|qq|0›condensate “melts”,mq* → 0 •  Mass Degeneration • (hadron masses?) - - ‹qq›T /‹qq›vac 1.2 Quark-Gluon Plasma Excite vacuum (hot+dense matter) free gas e/T4 • hadrons overlap, quarks liberated •  Deconfinement • (energy density e~ (# d.o.f )T4, • ecrit ≈ 1GeV/fm3 ) 3p/T4 Lattice QCD ’08 [Cheng et al ’08] • But: • matter around Tc strongly coupled: • “sQGP” (e – 3p ≠ 0 !)

  4. | | 1.3 QCD Phase Diagram and Nature Early Universe (few ms after Big Bang) Compact Stellar Objects (Neutron Stars) • Unique opportunity to study: • primordial Big Bang matter • quark (de-) confinement and mass (de-) generation • matter with smallest known viscosity (h/s): “near perfect fluid” • phase structure of non-abelian gauge theory (↔ string theory!?)

  5. Outline 1.) Introduction: QCD and QGP  Quark Confinement + Hadron Mass  Quark-Gluon Plasma + QCD Phase Diagram 2.) Experimental Probes of QCD Matter  Particle Spectra in Heavy-Ion Collisions 3.) Heavy-Quark Probes (c,b)  Heavy-Quark Diffusion in the QGP  Viscosity?! 4.) Electromagnetic Radiation  The Visible Mass in the Universe?!  Melting Vector Mesons + Dilepton Spectra 5.)Conclusions

  6. 2.1 The “Little Bang” in the Laboratory e+ e- c,b r Au + Au QGP ?! (t ≈ 5fm/c) Hadron Gas (t ≈ 10fm/c) “Freeze-Out” • Questions: • Thermalization? • QGP Signatures?? • QGP Properties??? Au + Au → X

  7. v2had  early thermalization, t0 ≤ 1fm/c 2.2 Basic Findings at RHIC:Hadron Spectra (1) Ideal Hydrodynamics:pT ≤ 2GeV [Shuryak, Heinz, …] ∂m Tmn = 0 Tmn = (e+P) um un – P gmn Input: equation of state e(P), initial conditions, freezeout Output: collective flow um radial + elliptic (v2)

  8. (2) Quark Coalescence: 2GeV ≤ pT ≤ 6GeV Ratio ET - m = • baryon-to-meson “anomaly” • “quark-number scaling” of elliptic flow _ hadronization via qq → M, qqq → B [Greco et al ‘03 Fries et al ‘03, Hwa et al ’03] (instantaneous, no spatial dependence of v2 in fq )  matter at RHIC thermalizes, e0 > ec, small viscosity, partonic

  9. 2.3 Problems + Advanced Tools • Key Questions: • - microscopic origin of “near perfect fluid”? How “perfect”? • - matter constituents / spectral functions? … • Heavy Quarks (charm, bottom): • created early, Brownian particle traversing QGP fluid • ► transport coefficients ↔ thermalization and “flow” • ►Q-Qbound states (J/y, Y) in QGP? • Electromagnetic Emission (photons, dileptons): • escape medium unaffected, “thermal radiation” • ►dilepton invariant mass: (Mee )2 = (pe++pe-)2 • ↔ direct access to in-medium spectral functions c,b - e+ e- r

  10. Outline 1.) Introduction: QCD and QGP  Quark Confinement + Hadron Mass  Quark-Gluon Plasma + QCD Phase Diagram 2.) Experimental Probes of QCD Matter  Particle Spectra in Heavy-Ion Collisions 3.) Heavy-Quark Probes (c,b)  Heavy-Quark Diffusion in the QGP  Viscosity?! 4.) Electromagnetic Radiation  The Visible Mass in the Universe?!  Melting Vector Mesons + Dilepton Spectra 5.)Conclusions

  11. 3.1 The Virtue of Heavy Quarks (Q=b,c) • Large scale mQ >> LQCD • → “factorization” even at low pT • → QQ produced in primordial N-N collisions • → well “calibrated” initial spectra at all pT • Large scale mQ >> T • → thermal momentum pth2 = 3mQT >> T2 ~ Q2therm. mom. transfer • → Brownian motion (elastic scattering) • → thermalization delayed by mQ/T- memory of rescattering • Flavor conserved in hadronization → coalescence!? • Elastic scattering Q2 = q02 – q2 ~ (q2/2mQ)2 – q2 ~ -q2 • → quasi-static potential approach!? • → common framework for heavy-quark diffusion and quarkonia -

  12. _ _ q q “D” c c 3.2 Heavy Quark Diffusion in the QGP • Brownian • Motion: Fokker Planck Eq. [Svetitsky ’88,…] Q scattering rate diffusion coefficient Microscopic Calculations of Diffusion q,g c • pQCD elastic scattering:g-1= ttherm ≥ 20 fm/cslow [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore ‘04] • D-/B-resonance model:g-1= ttherm ~ 5 fm/c parameters: mD , GD [van Hees+RR ’04]

  13. 3.2.2 Potential Scattering using Lattice QCD • HQ potential concept established • in vacuum (EFT, lattice) • 3-D reduced Bethe-Salpeter Eq. [Brambilla, Vairo et al] • T-matrix for Q-q scatt. in QGP , GqQ: Q-q propagator • potential: use lattice QCD • Q-Qinternal energy (T>Tc): _ • Meson and diquark “resonances” • for T ≤ 1.5 Tc

  14. 3.3 Comparison of Drag Coefficients(Thermal Relaxation Rate) [Gubser ’06] [Peshier ‘06; Gossiaux+Aichelin ’08] g [1/fm] [van Hees+RR ’04] [van Hees,Mannarelli, Greco+RR ’07] T [GeV] • proliferation?! NB: pQCD ↔ Coulomb ↔ AdS/CFT • T-matrix: Coulomb + ”string”(latQCD), resummed • “melting” resonances: trelax = 1/g ~ 5-8 fm/c ~ constant

  15. 3.4 Heavy Flavor Phenomenology at RHIC → relativistic Langevin simulations of heavy quark in QGP: • Medium Evolution • - hydrodynamics or parameterizations thereof • - realistic bulk-v2(~5-6%) • - stop evolution after QGP; hadronic phase? • Hadronization • - fragmentation: c → D + X • - coalescence: c + q → D, adds momentum and v2 • Semileptonic Electron Decays • - D, B → e±n X , ~ conserve v2 and RAA of parent meson • - charm/bottom composition in p-p [Hirano et al ’06]

  16. 3.4.2 Model Predictions vs. RHIC Data Semileptonic e±Spectra [PHENIX ’06] RAA≡ (dN/dpT )AA / (dN/dpT )pp • radiative E-loss upscaled pQCD • Langevin with resonances • + coalescence • Langevin with upscaled • pQCD elastic (Ds ~ 30/2pT) • c-q → Dcoalescence • increases bothRAA and v2

  17. Spatial Diffusion Ds = T/(mQg) 3.4.3 T-Matrix Approach vs. e± Spectra at RHIC • hadronic resonances at ~Tc • ↔ quark coalescence • connects 2 pillars of RHIC! • (strong coupl. + coalescence) no coal. [van Hees,Mannarelli,Greco+RR ’07]

  18. [Lacey et al ’06] [RR+van Hees ‘08] 3.5 Viscosity in sQGP? [Kovtun,Son +Starinets ’05] • Conjectured bound of sCFT (string-theo. methods): • use heavy-quark diffusion to estimate for QGP: kinetic theory: h/s ≈ 4/15 n <p> ltr /s = 1/5 T Ds  sCFT: h/s≈ 1/4p Ds(2pT) = 1/2 T Ds close toTc

  19. conserves energy, recovers thermal equilibrium, encodes v2(x) in fq(x,p) • Langevin, interaction strength determines v2max ≈7% • approximate scaling in KT=ET -m Quarks Mesons 2 3.6 “Reinterpretation” of Quark Coalescence “Resonance Recombination Model”: resonance scattering q+q → M close to Tc using Boltzmann eq. [Ravagli et al ’08] - 

  20. Outline 1.) Introduction: QCD and QGP  Quark Confinement + Hadron Mass  Quark-Gluon Plasma + QCD Phase Diagram 2.) Experimental Probes of QCD Matter  Particle Spectra in Heavy-Ion Collisions 3.) Heavy-Quark Probes (c,b)  Heavy-Quark Diffusion in the QGP  Viscosity?! 4.) Electromagnetic Radiation  The Visible Mass in the Universe?!  Melting Vector Mesons + Dilepton Spectra 5.)Conclusions

  21. e+ e- q q _ Dilepton Sources:Relevance: - Quark-Gluon Plasma: high mass + temp. qq → e+e-, …M>1.5GeV, T>Tc - Hot + Dense Hadron Gas: M≤ 1GeV p+p- → e+e-, … T ≤ Tc - e+ e- p- p+ r(770) 4.) Electromagnetic Radiation EM Correlation Function: e+ e- g* Im Πem(M,q;mB,T) Im Πem ~ Im Dr

  22. 4.2 r-Meson in Medium: Hadronic Interactions > rB /r0 0 0.1 0.7 2.6 > rMeson “Melting” Switch off Baryons [RR,Wambach et al ’99] [Chanfray etal, Herrmann etal, RR etal, Weise etal, Koch etal, Mosel etal, Eletsky et al, Oset etal, Lutz etal…] Dr (M,q;mB ,T) = [M 2 - mr2 -Srpp -SrB -SrM ] -1 r-Propagator: B*,a1,K1... r Sp r SrB,rM= Selfenergies: Srpp= N,p,K… Sp Constraints: decays: B,M→ rN, rp, ... ; scattering:pN→rN, gA, …

  23. 4.3 Dilepton “Excess” Spectra at SPS Thermal Emission Spectrum: • “average” Gr (T~150MeV) ~ 350-400 MeV • Gr (T~Tc) ≈ 600 MeV → mr • fireball lifetime: tFB ~ (6.5±1) fm/c [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08]

  24. 4.3.2 NA60 Data vs. In-Medium Dimuon Rates Mmm [GeV] [van Hees +RR ’07] [RR,Wambach et al ’99] • acceptance-corrected data directly reflect thermal rates!

  25. 4.3.3 Low-Mass Dileptons at RHIC: PHENIX • Successful approach at SPS fails at RHIC

  26. 5.) Conclusions • Strong-Interaction (QCD) Matter • - Quark (de-) confinement, Mass (de-) generation • - Can be studied in heavy-ion collisions • - “Near perfect” liquid?! • (Some) Recent Developments • - non-perturbative heavy-quark diffusion above Tc(“QGP liquid”) • - r-resonance melts toward Tc (“hadron liquid”) • Upcoming Experimental Programs: • - LHC (CERN), RHIC-2 (BNL), FAIR (GSI), NICA (Dubna), … • - “perturbative” QGP at high T? • - 1st order transition at finite mB > 0?

  27. 3.2.3 AdS/CFT-QCD Correspondence 3-momentum independent [Herzog et al, Gubser ‘06] • match energy density • (d.o.f = 120 vs. ~40) • and coupling constant • (heavy-quark potential) • to QCD Lat-QCD TQCD ~ 250 MeV  ≈ (4-2 fm/c)-1 at T=180-250 MeV [Gubser ‘07]

  28. qR qL • Profound Consequences: • effective quark-mass: • ↔ mass generation • massless Goldstone bosonsp0,±, • pion pole-strength fp = 93MeV • “chiral partners” split,DM ≈ 0.5GeV: > > > > - - qL qR JP=0±1± 1/2± 3.1 Chiral Symmetry + QCD Vacuum : isospin + “chiral” (left/right-handed) invariant But: “Higgs” Mechanism in Strong Interactions: qq attraction “Bose” condensate fills QCD vacuum Spontaneous Chiral Symmetry Breaking -

  29. 3.1.2 Hadron Spectra + Chiral Symm. Breaking Axial-/Vector Correlators Constituent Quark Mass “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] pQCD cont. • Weinberg Sum Rule(s) ● chiral breaking:|q2| ≤ 1 GeV2

  30. - [qq→ee] [HTL] 3.2.2 Dilepton Rates: Hadronic vs. QGPdRee /dM2 ~ ∫d3q f B(q0;T) ImPem • Hard-Thermal-Loop [Braaten et al ’90] • enhanced over Born rate • Hadronic and QGP rates • “degenerate” around~Tc • Quark-Hadron Duality at all M?! • ( degenerate axialvector SF!)

  31. 4.2 Heavy-Quark Spectra in Au-Au at RHIC • Relativistic Langevin simulations for heavy quarks in QGP fireball Nuclear Modification Factor Elliptic Flow RAA≡ (spec)AA /(spec)pp • factor 3-4 stronger effects due to resonance interactions • bottom quarks little affected [van Hees,Greco+RR ’05]

  32. meson + diquark “resonances” • up to ~1.5 Tc [van Hees et al ‘08] 4.4 Heavy-Light Quark T-Matrix in QGP • lattice-QCD based quark “potentials” • FQQ =UQQ –T SQQ

  33. Low-mass dilepton rate: r-meson dominated! ImDr  3.2 EM Spectral Function in Vacuum R = s(e+e- → hadrons) / s(e+e-→m+m-) ~ Im Pem(M) R - e+ e- q q e+ e- r √s=M M ≤ 1 GeV: non-perturbative (vector-meson resonance) M > 1.5 GeV: perturbative (qq continuum) - ImPem~ [ImDr + ImDw /10 + ImDf /5] ImPem ~ Nc∑(eq)2

  34. 3.4 r Meson in Cold Nuclear Matter Theoretical Approach: [Riek et al ’08] Fe-Ti in-medium r spectral function elementary production amplitude + rN ≈ 0.5 r0 r g N Mee[GeV] Nuclear Photo-Production: e+ e- r g invariant mass spectra g + A → e+e- X [CLAS/JLab ‘08]

  35. Q2≤ 1GeV2 → transition to “strong” QCD: • effective d.o.f. = hadrons (Confinement) • massive “constituent” quarks, • mq* ≈ 350 MeV ≈ ⅓ Mp (Chiral Symmetry • Breaking) ↕⅔fm 1.2 Quantum Chromodynamics (QCD) [Nobel approved, 2004] • well tested at high energies, Q2>1GeV2: • perturbation theory (as = g2/4π<< 1) • degrees of freedom = quarks + gluons (mu ≈ md ≈ 5-10MeV )

  36. - D - D J/y reaction equilibrium rate limit - c c J/y Nuclear Modification Factors Centrality Dependence Momentum Dependence 4.7 Q-Q Bound States in the QGP: J/y Suppression + Regeneration: - → ← J/y + g c + c + X [Zhao+RR ’08, ‘09]

  37. 4.1 Heavy-Quarks and Single-e± Spectra RAA = (AA) / (pp) Djordjevic etal. ‘04 Armesto etal.‘05 pT [GeV/c] • Radiative energy-loss of heavy quarks? • Thermalization and collective flow? • Consistency? • experimental tool: electron spectra D,B → eX c,b Nuclear Modification Factor Elliptic Flow ? [Armesto et al ’05] • radiative transport coefficient • larger than theory (~ 3-5) • origin of strong interactions? • bottom “contamination”?

  38. - → ← J/y + g c + c + X key ingredients: reaction rate equilibrium limit (y -width) (links to lattice QCD) 4.) Heavy Quarkonia in Medium4.1 Basic Elements and Connections to URHICs • 3-Stage Dissociation:nuclear (pre-eq) -- QGP -- HG • Stot = exp[-snucrL] exp[-GQGPtQGP ] exp[-GHGtHG ] • Regeneration in QGP + HG: • microscopically: backward reaction (detailed balance!) [PBM etal ’01, Gorenstein etal ’02,Thews etal ’01, Ko etal ’02, Grandchamp+RR ’02, Cassing etal ‘03] for thermal c-quarks and gluons:

  39. WA98 “Low-qt Anomaly” • addt’l meson-Bremsstrahlung • pp→ ppgpK→pKg • substantial at low qt [Liu+ RR’05] 5.) Electromagnetic Probes 5.1.1 Thermal Photons I : SPS Expanding Fireball + pQCD • pQCD+Cronin at qt >1.6GeV •  T0=205MeV suff., HG dom. [Turbide,RR+Gale’04]

  40. 5.1.2 Thermal Photons II: RHIC • thermal radiation qt<3GeV ?! • QGP window 1.5<qt<3GeV ?! • also: g-radiation off jets • shrinks QGP window qt<2GeV ?! [Gale,Fries,Turbide,Srivastava ’04]

  41. 3.3.5 Charmonium Width+Mass from Lattice QCD [Umeda+ Matsufuru ’05] using constrained curve fitting (Breit-Wigner functions) hcand J/y Mass hcand J/y Width • ”jumps” across Tc • qualitatively consistent with • partonic dissociation • essentially constant

  42. 3.5 Dilepton Spectra in Heavy-Ion Collisions (SPS) Acc.-corrected m+m-Spectra [NA60, 2009] Mmm [GeV] • quantitative agreement • exhibits Boltzmann slope (T) • invariant-mass spectrum! [van Hees+RR ’08] → Evolve dilepton rates over thermal fireball expansion m+m-Mass Spectra [NA60, 2005] drop. mass (norm.) Mmm [GeV] • show in-medium r broadening • normalized • “distorted” by exp. acceptance

More Related