560 likes | 581 Views
R. L. THEWS UNIVERSITY OF ARIZONA SQM2006 UCLA MARCH 26-31, 2006. IN-MEDIUM FORMATION OF QUARKONIUM (“RECOMBINATION”). IN-MEDIUM FORMATION. HIGH ENERGY EVOLUTION OF MATSUI-SATZ: R plasma screening < R quarkonium SUPPRESSION in a static medium, or
E N D
R. L. THEWS UNIVERSITY OF ARIZONA SQM2006 UCLA MARCH 26-31, 2006 IN-MEDIUM FORMATION OF QUARKONIUM (“RECOMBINATION”)
IN-MEDIUM FORMATION HIGH ENERGY EVOLUTION OF MATSUI-SATZ: Rplasma screening < Rquarkonium SUPPRESSION in a static medium, or KHARZEEV-SATZ:Ionization with deconfined gluons Charm pair diffuse away, will not recombine during deconfinement phase or at hadronization NEW SCENARIO AT COLLIDER ENERGIES
Multiple ccbar pairs in high energy AA Collisions • 10-15 from extrapolation of low energy • 20 from PHENIX electrons • 40 from STAR electrons and Kp CENTRAL VALUES AT RHIC: AND AT LHC: 100-200??
PROBE REGION OF COLOR DECONFINEMENT WITH MULTIPLE PAIRS OF HEAVY QUARKS Avoids Matsui-Satz Condition Form Quarkonium directly in the Medium Formation and Suppression Competition Scenario supported by lattice calculations of quarkonium spectral functions (J/y and hc)
IF THE INCOHERENT RECOMBINATION OF HEAVY QUARKS DETERMINES FINAL HADRONIC ABUNDANCES:
QUARKONIUM FORMATION MODELS IN REGION OF COLOR DECONFINEMENT • STATISTICAL HADRONIZATION: P. Braun-Munzinger, J. Stachel, Phys. Lett B490 (2000) 196 [nucl-th/0007059]. • KINETIC IN-MEDIUM FORMATION: R. L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C63 (2001) 054905 [hep-ph/0007323].
IF THE INCOHERENT RECOMBINATION OF HEAVY QUARKS DETERMINES FINAL HADRONIC ABUNDANCES: IN-MEDIUM FORMATION R. L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C63 (2001) 054905 [hep-ph/0007323]. L. Grandchamp, R. Rapp, Phys. LettB52360 (2001) [hep-ph/0103124]. L. Grandchamp, R. Rapp, G. E. Brown Phys Rev Lett 92, 212301 (2004).
Continuous In-Medium Formation followed by Partial Suppression
Model predictions very sensitive to Ncc and distribution Kinetic Model Statistical Therm+Form
CAN Y AND PT SPECTRA PROVIDE SIGNATURES OF IN-MEDIUM FORMATION? R. L. Thews and M. L. Mangano Phys. Rev. C73, 014904 (2006) [nucl-th/0505055] • Generate sample of ccbar pairs from NLO pQCD (smear LO qt) • Supplement with kt to simulate initial state and confinement effects • Integrate formation rate using these events to define particle distributions (no cquark-medium interaction) • Repeat with cquark thermal+flow distribution (maximal cquark-medium interaction)
All combinations of c and cbar contribute • Total has expected (Nccbar)2 / V behavior • Prefactor is integrated flux per ccbar pair
Nuclear broadening from Initial state parton scattering, extract l2 = 0.56 +/- 0.08 GeV2 for Au-Au at RHIC, compare with 0.12 +/- .02 GeV2 at fixed-target energy. Note: l and n are correlated within given nuclear geometry. S. Gavin and M. Gyulassy, Phys. Lett. B214 (1988)
Formation through “off-diagonal” pairs narrows rapidity distribution
Formation through “off-diagonal” pairs narrows pt distribution
Comparison with Thermal + Transverse Flow c-Quark Distributions K.A.Bugaev, M. Gazdzicki, M.I.Gorenstein, Phys.Lett.B544,127(2002) S.Batsouli, S.Kelly, M.Gyulassy, J.L.Nagle, Phys.Lett.B557,26 (2003)
Comparison with coalescence model: V Greco, C. M. Ko, R. Rapp, Phys. Lett. B595:202 (2004)