360 likes | 488 Views
Chapter Five. Genetics and the Development of the Human Brain. Chapter 5 Genetics and development of the human brain. Genetics and Behavior. Genotype – set of genetic instructions 23 pairs of chromosomes made up of DNA Phenotype – observable traits
E N D
Chapter Five Genetics and the Development of the Human Brain
Genetics and Behavior • Genotype – set of genetic instructions • 23 pairs of chromosomes made up of DNA • Phenotype – observable traits • Gene Expression – genetic instructions converted into a feature of a living cell • Mitochondrial DNA (mDNA) originates from mother • Alleles – alternative versions of particular gene
Figure 5.1 Mitochondrial DNA Allows Researchers to Trace Population History
Genetics and Behavior • From Genes to Proteins • Constructed from adenine, cytosine, guanine, thymine • Human gene activity in the brain very high • Proteome – proteins encoded and expressed by genome • Sources of Genetic Diversity • Meiosis and crossing over • Mutations – chromosome replication errors • The Special Case of the Sex Chromosomes • Sex-linked characteristics • X chromosome inactivation • Single Nucleotide Polymorphisms (SNPs)
Genetics and Behavior • The Roles of Heredity and Environment • Heritability always refers to a population not to individuals • Heritability cannot be assessed without taking the environment into account • Twin and adoption studies • Minnesota Study of Twins Reared Apart
Development • Growth and Differentiation of the Nervous System • Early differentiation • Cell germ layers – ectoderm, mesoderm, and endoderm • Neural plate, neural groove, neural tube • Formation of neurons and glia • Originate from cells in the ventricular zone • Progenitor cells divide by mitosis • Cell migration • Guided by radial glia • Cells in cerebral cortex arrive in an inside-out fashion
Development • Differentiation • Differentiation of the dorsal and ventral halves of neural tube • Differentiation of the neural tube along the rostral-caudal axis • Growth of Axons and Dendrites • Developing axons and dendrites end in growth cones • Filapodia and lamellipodia
Development • Formation of Synapses • Interaction with target cells influences the type of neurotransmitter released by the presynaptic cell • Movement of receptors to the synaptic site guided by chemical release by presynaptic and postsynaptic structures • Cell Death • Apoptosis = programmed cell death • Neurotrophins influence the survival of a neuron
Figure 5.19 Steps in the Formation of a Synapse at the Neuromuscular Junction
Development • Synaptic Pruning • Number of functional synapses is reduced • Myelination • Occurs in rostral direction starting with the spinal cord, then hindbrain, midbrain, and forebrain • Burst in myelination around the time of birth • Prefrontal cortex not completely myelinated until early adulthood
Effect of Experience on Development • Plasticity • Experience and the Visual System • Early in development cells of LGN and primary visual cortex receive input from both eyes • Experience with sensory information influences segregation of ocular dominance
Figure 5.22 Input Influences the Development of the Optic Tectum
Figure 5.23 Input from Both Eyes Competes for the Control of Target Cells in the LGN
Figure 5.24 Early Experiences Affect the Organization of Ocular Dominance Columns
Effect of Experience on Development • Experience and Social Behavior • Lorenz demonstrated imprinting in several species of birds • Romanian children and social deprivation • Ending a Critical Period • Conclusion of growth spurt in myelin coincides with reduced abilities to learn additional languages • Presence or absence of neurotrophins may influence timing of critical periods
Disorders of Brain Development • Neural Tube Defects • Anencephaly • Spinal bifida • Genetic Disorders • Down syndrome • Fragile-X syndrome • PKU • Environmental Toxins • Fetal alcohol syndrome
Redevelopment in Response to Damage • Anterograde degeneration, retrograde degeneration, and transneuronal degeneration • Genetic therapy and Nogo inhibitors as possible treatments
The Adult Nervous System • Fully mature at 25; weight of brain starts to decrease at 45 • Neurogenesis in Adulthood • Alzheimer’s Disease • neurofibrillary tangles • amyloid
Figure 5.28 Alzheimer’s Disease Produces Structural Abnormalities in Neurons