1 / 182

Triangle Fixer: Edge-based Connectivity Compression

This article introduces a new edge-based encoding scheme for polygon mesh connectivity, leading to compact mesh representations. The scheme allows for simple implementation and fast decoding, and it also extends to non-triangular meshes and meshes with group or triangle strip information.

browno
Download Presentation

Triangle Fixer: Edge-based Connectivity Compression

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Triangle Fixer:Edge-based Connectivity Compression Martin Isenburg University of North Carolina at Chapel Hill

  2. Introduction A new edge-based encoding schemefor polygon mesh connectivity.

  3. Introduction A new edge-based encoding scheme for polygon mesh connectivity.  compact mesh representations

  4. Introduction A new edge-based encoding scheme for polygon mesh connectivity.  compact mesh representations simple implementation

  5. Introduction A new edge-based encoding scheme for polygon mesh connectivity.  compact mesh representations simple implementation fast decoding

  6. Introduction A new edge-based encoding scheme for polygon mesh connectivity.  compact mesh representations simple implementation fast decoding

  7. Introduction A new edge-based encoding scheme for polygon mesh connectivity.  compact mesh representations simple implementation fast decoding  extends to non-triangular meshes

  8. Introduction A new edge-based encoding scheme for polygon mesh connectivity.  compact mesh representations simple implementation fast decoding  extends to non-triangular meshes extends to meshes with group ortriangle strip information

  9. What are ‘Polygon Meshes’ . . . ?

  10. A Simple Mesh

  11. Mesh with Holes

  12. Mesh with Handle

  13. Mesh with Handle and Holes

  14. How are Polygon Meshes stored . . . ?

  15. Geometry and Connectivity The minimal information we need to store is: • Where are the vertices located ?  mesh geometry • How are the vertices connected ?  mesh connectivity

  16. Standard Representation list of vertices x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 4 x4 y4 z4 6 4 . . . . . xn yn zn

  17. Standard Representation list of vertices list of faces x0 y0 z0 1 4 20 x1 y1 z1 x2 y2 z2 x3 y3 z3 4 x4 y4 z4 6 4 . . . . . xn yn zn

  18. Standard Representation list of vertices list of faces x0 y0 z0 1 4 20 x1 y1 z1 x2 y2 z2 x3 y3 z3 4 x4 y4 z4 6 4 . . . . . xn yn zn

  19. Standard Representation list of vertices list of faces x0 y0 z0 1 4 20 x1 y1 z1 x2 y2 z2 x3 y3 z3 4 x4 y4 z4 6 4 . . . . . xn yn zn

  20. Standard Representation list of vertices list of faces x0 y0 z0 1 4 20 x1 y1 z1 x2 y2 z2 x3 y3 z3 4 x4 y4 z4 6 4 . . . . . xn yn zn

  21. Standard Representation list of vertices list of faces x0 y0 z0 1 4 2 x1 y1 z1 2 3 03 4 x2 y2 z2 u2 v2 w24 0 53 4 x3 y3 z3 u3 v3 w33 4 53 6 4 x4 y4 z4 u4 v4 w45 0 2 . . . . . xn yn zn . . . . . . . . . . . . . . .

  22. Compressing Geometry list of vertices list of faces x0 y0 z0 1 4 2 x1 y1 z1 2 3 0 3 4 x2 y2 z2 u2 v2 w24 0 5 3 4 x3 y3 z3 u3 v3 w33 4 5 3 6 4 x4 y4 z4 u4 v4 w45 0 2 . . . . . xn yn zn . . . . . . . . . . . . . . .

  23. Compressing Connectivity list of vertices list of faces x0 y0 z01 4 2 x1 y1 z12 3 0 3 4 x2 y2 z2u2 v2 w24 0 5 3 4 x3 y3 z3u3 v3 w33 4 5 3 6 4x4 y4 z4u4 v4 w45 0 2 . . . . . xn yn zn . . . . . . . . . . . . . . .

  24. Uncompressed Connectivity 2 1 3 0 6 5 4 7 9 11 8 12 10

  25. Uncompressed Connectivity 0 4 5 2 1 3 0 6 5 4 7 9 11 8 12 10

  26. Uncompressed Connectivity 0 4 5 0 5 1 2 1 3 0 6 5 4 7 9 11 8 12 10

  27. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 2 1 3 0 6 5 4 7 9 11 8 12 10

  28. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 1 3 0 6 5 4 7 9 11 8 12 10

  29. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 2 1 3 0 6 5 4 7 9 11 8 12 10

  30. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 2 1 3 0 6 5 4 7 9 11 8 12 10

  31. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 2 1 3 0 6 5 4 7 9 11 8 12 10

  32. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 2 1 3 0 6 5 4 7 9 11 8 12 10

  33. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 2 1 3 0 6 5 4 7 9 11 8 12 10

  34. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 2 1 3 0 6 5 4 7 9 11 8 12 10

  35. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 2 1 3 0 6 5 4 7 9 11 8 12 10

  36. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 2 1 3 0 6 5 4 7 9 11 8 12 10

  37. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 9 10 11 2 1 3 0 6 5 4 7 9 11 8 12 10

  38. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 9 10 11 11 12 7 2 1 3 0 6 5 4 7 9 11 8 12 10

  39. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 9 10 11 11 12 7 2 1 3 0 6 5 4 7 9 11 8 12 10

  40. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 9 10 11 11 12 7 2 1 3 0 6 5 4 7 9 11 8 12 10

  41. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 9 10 11 11 12 7 2 1 3 0 6 5 4 7 9 11 8 12 10

  42. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 9 10 11 11 12 7 2 1 3 0 6 5 4 7 9 11 8 12 10

  43. Uncompressed Connectivity 0 4 5 0 5 1 5 6 1 1 6 2 2 6 3 4 8 5 8 9 5 5 9 6 9 11 6 6 11 7 6 7 3 8 10 9 9 10 11 11 12 7 6 log(n) bpv 2 1 3 0 6 5 4 7 9 11 8 12 10

  44. Maximum Connectivity Compression for Triangle Meshes

  45. Turan’s observation • The fact that a planar graph can be decomposed into two spanning trees implies that it can be encoded in a constant number of bits.

  46. Turan’s observation • The fact that a planar graph can be decomposed into two spanning trees implies that it can be encoded in a constant number of bits. • The two spanning trees are: • a vertex spanning tree • its dual triangle spanning tree

  47. Turan’s observation • The fact that a planar graph can be decomposed into two spanning trees implies that it can be encoded in a constant number of bits. • The two spanning trees are: • a vertex spanning tree • its dual triangle spanning tree • He gave an encoding that uses 12 bits per vertex (bpv).

  48. Vertex Spanning Tree

  49. Vertex Spanning Tree

  50. Vertex Spanning Tree

More Related