960 likes | 979 Views
Discover the methodology, history, and future prospects of X-ray searches for high-redshift galaxy clusters. Learn about key motivations, cosmological probes, and advancements in the study of cosmic evolution.
E N D
X-ray Searches for Distant Clusters Chris Mullis University of Michigan Special Thanks To: Pat Henry, Piero Rosati, Hans Böhringer, Alexey Vikhlinin, Harald Ebeling, Isabella Gioia
Overview • Motivations • X-ray Selection & Methodology • Brief History • Current Surveys • Future Prospects
A Few Caveats… • Just highlighting examples (NOT COMPLETE REVIEW) • Recognize important work at low/intermediate redshifts • Mostly focused on z>0.5 results
Motivations for the Study of High-Redshift Galaxy Clusters • Key Tracers of Large-Scale Structure Cosmological Probes
The evolution of cluster space density reflects underlying cosmology & physics Borgani & Guzzo 2001, Nature, 409, 39
Requirements for Cosmology • Sensitivity over a long redshift baseline • Observational proxy for cluster mass • Accurate selection function • High completeness / low contamination
F(Lx): Constraints on σ8-Ωm from RDCS Clusters Borgani et al. 2001, Rosati, Borgani & Norman 2002
F(Tx): Constraints from Evolution of EMSS XTF Henry 1997, 2000, 2004 also Donahue & Voit 1999 z~0.05 z~0.42
F(Mb): Baryon MF of 160SD Clusters at z~0.5 Ωm=0.27 z~0.05 z~0.55 Vikhlinin et al. 2003
Motivations for the Study of High-Redshift Galaxy Clusters • Laboratories for Cosmic Evolution • Formation & evolution of galaxies in high-density environments • Feedback and Chemical Yield of SNe • Thermal & chemical evolution of ICM
Galaxy Formation & Evolution Poggianti et al. 2004
Massive, High-z Clusters = TestbedsHierarchical vs. Monolithic MS 1054-03 z=0.83 High-z X-ray-Selected Cluster van Dokkum et al. 2000
ICM Metal Enrichment History Star Formation History of Cluster Galaxy Population Non-Evolving(?) Gas Iron Abundance out to z=1.2 Tozzi et al. 2003 See also Ettori 2005
High redshift = leverage precision of cosmological parameters efficacy of evolution studies
RXJ1716+6709 z=0.81 ROSAT NEP Survey Henry et al. 1997, Gioia et al. 1999, Mullis 2001
Chandra ACIS-I, 51ks, 3-10 kev RXJ1716+6709 z=0.81 ROSAT NEP Survey Henry et al. 1997, Gioia et al. 1999, Mullis 2001
Advantages of X-ray Selection • Basic X-ray observable (Lx) directly related to a fundamental physical property (M)
X-ray Luminosity versus Mass Reiprich & Böhringer 2002; see also Popesso et al. 2005
Advantages of X-ray Selection • Essentially free of projection effects - low X-ray background • Lx ne2 clusters appear more sharply in X-ray than optical light complete samples
galaxy group HCG 94 galaxy cluster Abell 2572 DSS
galaxy cluster z=0.042 galaxy cluster z=0.155 galaxy group z=0.039 DSS + ROSAT PSPC Ebeling et al. 1995
Advantages of X-ray Selection • Basic X-ray observable (Lx) physically motivated and directly related to a fundamental physical property (M) • Essentially free of projection effects complete samples • Well-defined selection function, (fx) volume normalized diagnostics (e.g. XLF, XTF MF)
Building X-ray SamplesNumber Density - Flux Relation Cluster logN-logS: Rosati, Borgani & Norman 2002 (ARAA)
Local Cluster XLF REFLEX Böhringer et al. 2002 See aso Ebeling et al. 1997; De Grandi et al. 1999
Predicted RedshiftDistribution of Clusters foreground XLF no evolution XLF AB evolution Rosati et al. 02 Mullis et al. 04 Sky Coverage
Contiguous Regions: All-Sky or Raster ROSAT image of the NEP Henry et al. 2001 Voges et al. 2001 Gioia et al 2001 Mullis 2001
Cluster z=0.243160SD #210 Cluster z=0.242160SD #208 QSO Serendipitous Survey
Ground-Based Follow-up • Initial Goals: • Confirm presence of galaxy overdensity • Redshift Measurement • Classical approach …one cluster at a time • Wholesale multi-λ coverage …photometric redshifts
Optimizing for Very High-Z • Optical Follow-up is the Challenge • Leverage Existing Data • Utility of color information Cluster ellipticals with old stellar pops (e.g., Dressler et al. 1997, Postman et al. 1998) • Red-Sequence + Bracketing the 4000A Break(e.g. Gladders & Yee 2000, Kodama & Arimoto 1997) • Spectroscopy is expensive • major problem at z>1.45 (or z>1.63 using OII) • B2640A, MgII2800A, MgI2852A (e.g,. Cimatti et al. 2004) • NIR photometry enables zphot & science
Brief History ROSAT Surveys 1990s Einstein EMSS 1980s See Rosati, Borgani & Norman 2002 forthorough review
Key Characteristics of X-ray Sats * First with imaging optics
First X-ray Detection of Distant Clusters • EinsteinObservatory(Giaconi et al. 1979) • e.g., Henry et al. 1979 • Einstein obs. of optically-selected clusters (mostly Abell z~0.2)
What’s Distant? • EMSSGioia et al. 1990ab, Stocke et al. 1991Henry et al. 1992 • 93 X-ray-selected clusters (zmax=0.58)
Einstein EMSSEvolution of the Cluster XLF z = 0.17 z = 0.17 Low-redshift XLF <z>=0.17 z = 0.33 High-redshift XLF <z>=0.33 Nov 1978 - Apr 1981 Gioia et al. 1990 Henry et al. 1992
MS1054-0321 z=0.83HST / van Dokkum & Franx EMSS Clusters • Cluster Evolution -> Cosmology (Ωm) • e.g., Oukbir & Blanchard 1996, Bahcall & Cen 1997, Eke et al. 1998, Henry 2004 • CNOC Cluster Surveye.g., Carlberg, Yee, Ellingson 1996, Balogh et al. • Cluster Masses & Cosmology • Galaxy Evolution in Clusters & Field • Distant Clusters • MS1054-0321 z=0.83 • most distant EMSS cluster • e.g., Luppino & Kaiser 1997 (WL)Donahue et al. 1998 (X-ray) • MS1137.5=6025 z=0.78 • e.g., Donahue et al. 1999
X-ray Cluster Universe Surveyed by Einstein zmax ~ 0.8
Compilation of 8 High-Redshift Cluster XLFs Mullis et al. 2004
ML Contours for the fitting parameters of an Evolving Schechter Function no evolution A=B=0 Rosati et al. 2002 Henry 2003 Mullis et al. 2004
Cluster Co-moving Volume Density Prediction based on 160SD + others at Lx < 1045 Data from the eBCS+MACS at Lx > 1045 (Ebeling et al. 2004) Mullis et al. 2004
z>1 X-ray Clusters ClG J0848+4453 z=1.273RDCS (IR-selected) RX J0848.6+4453 z=1.261RDCS RX J1252.9+2927 z=1.237 RDCS RX J1053.7+5735 z=1.14 Lockman Hole Hashimoto et al. 2004 RX J0910+5422 z=1.106RDCS Cl J1415.1+3612 z=1.03 WARPS Doland, Ebeling, Barrett 2006 . Low-z: >1000 clusters Med-z: 100s clusters Very Hi-z: only a few clusters
5 keV 3 keV RDCS0849 RDCS0848 1.5’ 0.75 Mpc z=1.106 z=1.263 z=1.272 5.5 keV 6 keV RDCS1252 RDCS0910 z=1.237 Clusters at z > 1 observed with Chandra, HST and Spitzer RDCS z>1 Clusters • Advanced stage of formation • No signs of mergers • Present-day metalicity • Dominated by old stellar pops • Formation epoch z>1.3 courtesy Piero Rosati
Challenges to Hierarchical Structure Formation RDCS1252.9-2927 (z=1.237) Rosati et al.
Tight Red Sequence at z=1.24 Blakeslee et al. 2003, Lidman et al. 2003, Rosati et al. 2004
Slowly Evolving K-band LF Toft et al. 2004; see also Strazzullo et al. 2005