1 / 24

Space-Saving Strategies for Computing Δ -points

This paper explores different methods for computing Δ-points efficiently and with minimal space usage. The methods range from O(MN) time and space complexity to O(1/εMN) time and space complexity. Bonus points are given for achieving better time and space complexity.

bryceb
Download Presentation

Space-Saving Strategies for Computing Δ -points

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Space-Saving Strategies for Computing Δ-points Kun-Mao Chao (趙坤茂) Department of Computer Science and Information Engineering National Taiwan University, Taiwan http://www.csie.ntu.edu.tw/~kmchao

  2. Δ-points • S-(i, j): the best score of a path from (0, 0) to (i, j). • S+(i, j): the best score of a path from (i, j) to (M, N). • Δ-points: S-(i, j) + S+(i, j) >= Δ S - S +

  3. Match: 8 Mismatch: -5 Gap symbol: -3 C G G A T C A T CTTAACT optimal score

  4. C T T A A C – TC G G A T C A T 8 – 5 –5 +8 -5 +8 -3 +8 = 14 C G G A T C A T CTTAACT

  5. Match: 8 Mismatch: -5 Gap symbol: -3 S- Matrix C G G A T C A T CTTAACT

  6. Match: 8 Mismatch: -5 Gap symbol: -3 S+ Matrix C G G A T C A T CTTAACT

  7. Match: 8 Mismatch: -5 Gap symbol: -3 S+ Matrix C G G A T C A T CTTAACT

  8. Match: 8 Mismatch: -5 Gap symbol: -3 C G G A T C A T CTTAACT

  9. Match: 8 Mismatch: -5 Gap symbol: -3 C G G A T C A T CTTAACT

  10. Match: 8 Mismatch: -5 Gap symbol: -3 S- + S+ Matrix C G G A T C A T CTTAACT

  11. Match: 8 Mismatch: -5 Gap symbol: -3 S- + S+ Matrix Δ=14 C G G A T C A T CTTAACT

  12. Match: 8 Mismatch: -5 Gap symbol: -3 S- + S+ Matrix Δ=13 C G G A T C A T CTTAACT

  13. Method 1: O(MN) time; O(MN) space S - S + N M

  14. Method 2: O(M2N) time; O(N) space N S - Each row takes O(MN) time.In total, O(M) x O(MN) = O(M2N) S + M

  15. Method 3: O(MN) time; O(N) space N S - S + M

  16. Method 4: O(MN log M) time; O(N log M) space N S - S + M

  17. Method 4: O(MN log M) time; O(N log M) space (cont’d) N … O(log M) layers M O(N) O(N) O(N) O(N) O(N)

  18. The computation of S-(i, j) and S+(i, j) inside a block S - S - S + S +

  19. Method 5: O(MN log min {M, N}) time; O(M+N) space N M

  20. Method 6: O(MN log log min {M, N}) time; O(M+N) space Real Size 1/25 1/23 N 1/210 1/25 1/22 M 1/29 1/219

  21. Method 7: O(1/ε MN) time; O(1/εMεN) spaceHere we use ε= 1/2 to illustrate the idea. N Solve each M1/2N problem M1/2 S - S + M

  22. Method 8: O(1/εMN) time; O(1/εM1+ε+ N) spaceHere we use ε= 1/2 to illustrate the idea. M 2M 3M N M O(N) M Solve each M1/2M problem M1/2 S - S + M

  23. Methods Method 1: O(MN) time; O(MN) space Method 2: O(M2N) time; O(M) space Method 3: O(MN) time; O(M) space Method 4: O(MN log M) time; O(N log M) space Method 5: O(MN log min {M, N}) time; O(M+N) space Method 6: O(MN log log min {M, N}) time; O(M+N) space Method 7: O(1/εMN) time; O(1/ εMεN) space Method 8: O(1/εMN) time; O(1/εM1+ε+ N) space

  24. Bonus points • O(MN) time; O(M+N) space • o(MN log log min {M, N}) time; O(M+N) space • O(1/εMN) time; o(1/εM1+ε+N) space

More Related