200 likes | 425 Views
Superconducting gap structure in BaFe 2 (As 0.7 P 0.3 ) 2 revealed by ARPES. T.Yoshida et.al. a rxiv : 1301.4818. T.Shimojima et.al. Science 332,564. Kitaoka Lab Masashi Miyamoto. ① Introduction ・ Iron-based Superconductors ・ BaFe 2 (As 1-x P x ) 2
E N D
Superconducting gap structure in BaFe2(As0.7P0.3)2 revealed by ARPES T.Yoshida et.al. arxiv : 1301.4818 T.Shimojima et.al. Science 332,564 Kitaoka Lab Masashi Miyamoto
① Introduction ・Iron-based Superconductors ・BaFe2(As1-xPx)2 ・Fermi surfaces (FSs) ・Motivation ②Experiments ・Angle-Resolved Photoemission Spectroscopy (ARPES) ③ Results ・ARPES results ・Comparison to theoretical calculation. ④ Summary Contents
Introduction Iron-based Superconductors 1900 1920 1940 1960 1980 2000 2020 Year 200 2006 metal heavy fermion system Iron-based high-Tc superconductor high-Tc cuprate 163 Hg-Ba-Ca-Cu-O iron-based system under high pressure ( ) 150 Hg-Ba-Ca-Cu-O Tl-Ba-Ca-Cu-O Bi-Sr-Ca-Cu-O 100 Transition temperature (K) Y-Ba-Cu-O 77 SmO F FeAs 50 0.9 0.11 MgB2 La-Ba-Cu-O LaO F FeAs PuCoGa5 Nb Ge 0.11 0.89 Nb Pb CeCu2Si2 NbN LaOFeP Hg NbC 0
Iron-based Superconductors Introduction 1111 122 111 11 Fe As FeSe LiFeAs LaFeAsO BaFe2As2 Tc max = 55K Tc max = 38K Tc max = 18K Tc max = 8K Each system has FeAs (FeSe) layer
Introduction • BaFe2As2 Ba1-yKyFe2As2 Ba(Fe1-zCoz)2As2 T hole-doping electron-doping Stripe AFM SC y SC z 0
Introduction • BaFe2(As1-xPx)2 Motivation Substitution P for As ⇒ iso-valent doping ⇒ chemical pressure Substitution : 置換 iso-valent : 等価な
Introduction • BaFe2(As1-xPx)2 Motivation X=0.3 (This work) AFO : Anti Ferromagnetic-orthorhombic SC : Superconductivity (tetragonal) PT : Paramagnetic-tetragonal orthorhombic : 斜方晶の tetragonal : 正方晶の
Introduction • BaFe2(As1-xPx)2 The origin of Superconductivity? Motivation z Degenerated 3d-orbital ⇒ orbital degrees of freedom Orbital fluctuation ⇔Superconductivity ? Anti-ferromagnetic spin fluctuation ⇔ Superconductivity ? fluctuation : 揺らぎ degenerated : 縮退した
Introduction ky kx Superconductivity mediated by anti-ferromagnetic spin fluctuation Sign-changing of Superconducting gap Fermi Surfaces Single band (cuprate) Multi band (Iron-based) Δ>0 Node( Δ= 0 ) Δ<0 Δ<0 ? Δ>0 Nodal gap node : 超伝導ギャップが0になる点 Δ : 超伝導ギャップ Cuprate : 銅酸化物
Introduction kz ky electron Fermi Surface (Iron-based) kx hole Band structure Two dimensional structure like a cylinder Full gap Some of these have nodes ?
Introduction • Existence of line node • in BaFe2(As1-xPx)2 Motivation Magnetic penetration-depth ①Where nodes exist ? Thermal conductivity ② SC gap structure NMR (Nuclear Magnetic Resonance) Observe the Fermi Surfaces of BaFe2(As0.7P0.3)2 directly by ARPES Magnetic penetration-depth : 磁場侵入長 NMR : 核磁気共鳴
ARPES Photo-emisson spectroscopy Experiments Photo-emissonspectroscopy (PES) E detect Vacuum level (Ev) Fermi level (EF) Φ仕事関数 Energy conservation photoelectric effect EB: Binding Energy DOS PES provides information of Density of states. Photo emission spectroscopy : 光電子分光
Experiments ARPES Angle-resolved photo-emission spectroscopy P// Vacuum photon P⊥ θ p⊥ Sample surface detector p// Sample Momentum conservation in surface parallel direction ARPES reveals Band dispersions and Fermi surface picture. Angle-resolved photo-emission spectroscopy : 角度分解型光電子分光 dispersion : 分散
Result example 5 1 θFS ① hole FSs kz ky kx Γ Isotropic SC gap Isotropic : 等方的 ⇔ anisotropic : 異方的
Results example ① hole Fermi Surfaces kz ky kx No line nodes
Results ②electron Fermi Surface A clear anisotropy is not identified Anisotropic gap !
Results + Momentum dependence of the SC gap - Hole FSs K.Suzuki et.al. JPSJ-80-013710 isotropic gap (no node) anisotropic gap node onlySpin-fluctuation-mediated mechanism
Results Calculation with consideration of both spin and orbital fluctuation experiment theory Loop-like node Theoretical calculation Inner electron FS Inner electron FSs : anisotropic gap (loop node) Hole FSs : isotropic gap (no node)
Summary In BaFe2(As0.7P0.3)2 ・Hole FSs have no node Motivation ・Inner electron FS has gap anisotropy and loop-like node ・Both spin fluctuations and orbital fluctuations may contribute to the superconductivity