230 likes | 379 Views
Cosmological Weak Lensing With SKA in the Planck era. Y. Mellier. SKA, IAP, October 27 , 2006. Cosmic shear : propagation of light through the cosmic web. ~ Gpc. Cosmological distortion field projected on the sky.
E N D
Cosmological Weak Lensing With SKA in the Planck era Y. Mellier SKA, IAP, October 27 , 2006
Cosmic shear : propagation of light through the cosmic web ~ Gpc
Weak gravitational lensing and cosmology:Light propagation in inhomogeneous universes ds2=c2dt2 - a2(t) [dw2 + fK2(w) d2] Deflection angle: Bartelmann & Schneider 2001; Erben 2002 Power spectrum, growth rate of structure Distances Both depend on the dark matter and dark energy content in the Universe
Properties of Dark energy in the Planck era: measuring very small effects, DE dominated era at small z (good for WL)
Cosmic shear surveys and dark cosmological models : exploring the power spectrum z=2 z=1
Shapes and Shear: practicing WL Mellier 1999 κ PSF anisotropy correction Derived from star shape analysis. Image quality of primary importance for weak lensing = s + i + noise + systematics…. δ ~ 2γ(weak lensing regime) Reliability of results: depends on PSF analysis Assume sources orientation is isotropic: Weak lensing regime : ~ 2 = ‹Shear›+ noise
I. The shape and amplitude of the signal is in very good agreement with gravitational instability paradigm in a CDM-dominated universe. (Blandford el al 1991, Miralda-Escudé 1991, Kaiser 1992, 1998, Bernardeau et al 1997, Jain & Seljak 1997, Schneider et al 1998) Top-Hat Shear variance (observed) Top-Hat Shear variance (predicted) Map variance Non-Linear Non_linear Linear Linear Refregier et al 2002 Bartelmann & Schneider 2001 : theoretical predictions from the gravitational instability scenario See: Bacon et al 2000* , 2001 ; Kaiser et al. 2000* ; Maoli et al. 2000* ; Rhodes et al 2001* ; Refregier et al 2002 ; van Waerbeke et al. 2000* ; van Waerbeke et al. 2001, 2005 ; Wittman et al. 2000* ; Hammerle et al. 2001* ; Hoekstra et al. 2002 * ; Brown et al. 2003 ; Hamana et al. 2003 * ; Jarvis et al. 2003 ; Casertano et al 2003* ; Rhodes et al 2004 ; Massey et al. 2004 ; Heymans et al 2004* ; Semboloni et al 2006 ; Hoekstra et al 2005, Hetterscheidt et al 2006, Schrabback et al 2006, Fu et al 2006
Cosmic shear and dark energy Cosmic shear is a unique way to explore the dark matter power spectrum P(k,z) directly • Galaxy ellipticity • Galaxy redshift
Cosmic shear and dark energy Cosmic shear is a unique way to explore the dark matter power spectrum P(k,z) directly • Galaxy ellipticity • Galaxy redshift • Power spectrum • Bispectrum • Decoupling geometry/P(k) • Tomography • Control systematics
Cosmic shear and dark energy Cosmic shear is a unique way to explore the dark matter power spectrum P(k,z) directly • Galaxy ellipticity • Galaxy redshift • Power spectrum • Bispectrum • Decoupling geometry/P(k) • Tomography • Control systematics Dark energy properties
Cosmic shear and dark energy Cosmic shear is a unique way to explore the dark matter power spectrum P(k,z) directly • Need high image quality • Accurate PSF correction • Accurate galaxy redshift • Large FOV for linear power spectrum • Large FOV for cosmic variance • Galaxy ellipticity • Galaxy redshift • Power spectrum • Bispectrum • Decoupling geometry/P(k) • Tomography • Control systematics Dark energy properties
Errors and systematics uncertainties • PSF corrections • Redshift distribution • Clustering • Contamination by overlapping galaxies • Intrinsic alignement • Intrinsic foreground/backgound correlations • Sampling variance • Non-linear variance • Non-linear dark matter power spectrum • + cosmic variance (survey size, survey topology, depth)
Exploring DE as function of redshift : still far from getting wa CSLS+SNLS SNSL 5yr CSLS 5yr Deep+Wide 170/170 deg2 SNLS 5yrs Jarvis, Jain, Bernstein, Dolney 2005
Survey Filters Depth Dates Status Sq. Degrees CTIO 75 1 shallow published VIRMOS 9 1 moderate published COSMOS 2 (space) 1 moderate complete 36 4 deep complete DLS (NOAO) Subaru 30? 1? deep observing 2005? 170 5 moderate observing CFH Legacy 2004-2008 830 3 shallow approved RCS2 (CFH) 2005-2007 VST/KIDS/ VISTA/VIKING 1700 4+5 moderate 2007-2010? 50%approved 5000 4 moderate proposed DES (NOAO) 2008-2012? Pan-STARRS ~10,000? 5? moderate ~funded 2006-2012? LSST 15,000? 5? deep proposed 2014-2024? 1000+ (space) 9 deep proposed JDEM/SNAP 2013-2018? Cosmic shear: non-SKA projects KIDS + CFHTLS Wide + CFHTLS Deep: 3 lens planes proposed moderate 5000? 4+5 2010-2015? VST/VISTA proposed moderate 2+1? DUNE 20000? (space) 2012-2018?
DUNE: Very Large FOV: 10000 deg2 Space: excellent PSF correction No spectro-z Reasonnably good photo-z? 109 galaxies 2017? SNAP: Reasonnable FOV: 1000 deg2 Space: excellent PSF correction No spectro-z Good photo-z 5x108 galaxies >2015? LSST: Very Large FOV: 15000 deg2 Ground: reassonably good PSF correction No-spectro-z Reasonnably good photo-z 5x109 galaxies 2014? SKA vs. others SKA: Very Large FOV: 20000 deg2 Radio: Excellent PSF correction Spectro-z 5x109 galaxies >2020?
Merit factors BUT: this assumes systematics are controled
Intrinsic projected ellipticity distribution of galaxies in the optical/NIR bands σε =0.35
Intrinsic projected ellipticity of SKA galaxies • What is σε for the SKA sample? • How does it vary with galaxy type? • How does it vary with environment? • How does it vary with redshift?
Cosmic shear with SKA • Strong points: • Very large FOV (linear spectrum, cosmic variance) • Excellent sampling of the PSF • Excellent sampling of galaxies • Very precise N(z) :best for control of systematics (e.g. effects of clustering) • Unknown: • Intrinsic ellipticity dispersion and its evolution with redshift • PSF stability ? • Weak point: • A bit far as compared to other projects (could be an advantage… it depends on what other projects will find…)