1 / 31

J OLANTA B RODZICKA

Doubly charmed B decays. B  D (*) D (*) K. ( for ~140 fb -1 ). J OLANTA B RODZICKA. BGM Nov 21, 2003. I NSTITUTE OF N UCLEAR P HYSICS , K RAKOW. b  c c s transition “ wrong-sign” D production physics motivations analysis method

buffy
Download Presentation

J OLANTA B RODZICKA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Doubly charmed B decays B D(*)D(*)K ( for ~140 fb-1 ) JOLANTA BRODZICKA BGMNov 21, 2003 INSTITUTEOF NUCLEAR PHYSICS, KRAKOW

  2. b  c c stransition “wrong-sign” D production • physics motivations • analysis method • preliminary results ( for ~140 fb-1 ): signals and BF’s D(*)KandD(*)0D0mass spectra ( search for X(3872)→D*0D0) • summary and conclusions B0 D-D0K+ B+ D0D0K+ B0 D*-D0 K+ B+ D0D*0K+ B0 D*-D*0K+ B+ D0D*+K0s JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Outline B+ D*-D*+K0s (no BF yet)

  3. Leading quark diagrams B D(*)D(*)K decays B+ D(*)0 D(*)+ K0 B0 D(*)- D(*)0 K+ B+ D(*)+ D(*)- K+ B0 D(*)0 D(*)0 K0 B+ D(*)0 D(*)0 K+ B0 D(*)- D(*)+ K0 JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 b  cW - c c s + dd (uu) pair creation ( I ) through external W emission amplitudes ( II) internal W emission amplitudes (color-suppressed) ( III ) external +internal W emission amplitudes 22 decay modes + c.c

  4. B  D(*)D(*)K : good place to explore spectroscopy: X  DD • cc-bar states above DD threshold scarcely known((3770) (4040) …) • molecular charmonia ( X(3872) ? ) , ccqq states, ccg hybrid states… Y  D(*)K from W vertex • c s : L= 0 0-Ds(1970) 1-D*s(2112) well known L= 1 jP = 1/2+0+ DsJ± (2317) 1+ DsJ± (2457) seen, do not decay to DK ( chiral doublet toDs± Ds*± ) jP = 3/2+1+ Ds1± (2536) 2+ DsJ± (2573) not seen in B decays ( do chiral partners exist?) • measurement of the BF’s and their ratios: important for understanding of factorization, color suppression and ‘charm deficit ’ in B decays • B0 D(*)+ D(*)- K0Sto probe both sin21 and cos21 Physics motivations JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003

  5. Analysis details JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 accepted events with:R2< 0.3 tracks with:abs(IP_dz)< 5cmabs(IP_dr)< 0.4cm K± :P(K/) > 0.4± : P(/K) > 0.1electron veto:el_id < 0.95 K0S :abs( M(+ -) - MKs ) < 15MeVonly good_K0s 0: E > 50 MeVabs( M( ) -M0 ) < 15MeV • D(*) reconstruction D0K, K3, K0, Ks, KK BF ~ 28%of total D±K, Ks, KK, KsK BF ~ 12%of total abs(M(D)-M(DPDG) ) < 20MeV ( D0 K0: -50MeV ) vertex fit (cl > 0.) and mass constraint fit applied, p(D) < 2GeVin (4S) system D*± D0±abs(M(D*±)-M(D)-mPDG) < 2.5MeV D*0 D00abs(M(D*0)-M(D)-mPDG) < 5MeV vertex fit (cl > 0.)applied • Breconstruction : all(22 + c.c)physical combinationsD(*)D(*)K B vertex fit:with IP and B constraints Mbc> 5.2 GeV -0.40 < E < 0.35 GeV

  6. D(*) plots for ~11fb-1 sampleafter preselection S(MD) LR_D ( MD )= S(MD) B(MD) + + S(MD*) LR_D*( MD* )= S(MD*) B(MD*) JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Multi-candidates events treatment p(D) < 2GeVin (4S) system • > 1 candidates in the same B sub-mode • several D(*) candidates per event • D(*)D(*) comb. with different K`s D, D* probabilities (LR): LR LR MD MD LR LR S(MD), B(MD) and S(MD*), B(MD*) parameterization from MD and MD*fits to data ( “inclusively” reconstr. D(*) ) MD* MD*

  7. JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Choice of the best B candidate B probability ( LR_B ) ( for each B decay sub-mode separately ) LR_B = LR_D(*) × LR_D(*) • best B candidate : with max LR_B • equal LR_B case ( B`s differ only in K ) : • larger K±_ID or better K0S mass candidate chosen S/(S+B) choice method “combines” both criteria: (M-MPDG)/ and S/B ratio LR_B used also for background discrimination

  8. B+ D0D0K+ LR_D0 * LR_D0 cut B+ D0D0K+ B+ D0D0K+ B+ D0D0K+ JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 LR_B cut (good for background reduction and S/B improvement) Data for Mbc>5.27GeV N/7.5MeV Signal MC no LR cut S / sqrt (S + B ) N/7.5MeV LR > 0.04 LR > 0.1 N/7.5MeV Signal MC: ( for BF=1.5 * 10-3 ) Background:Mbcsideband E

  9. plot for Mbc >5.27 GeV N/7.5MeV E plot for abs(E)<25MeV N/2MeV For fully reconstr. signal: S= 127.6 ± 15.3 Stat_signif.= 10.9 eff= ( 6.98 ± 0.14 ) *10-4 BF = ( 1 .68 ± 0.20 ± 0.25 ) * 10-3 Mbc JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 B0 D-D0K+ & a little bit more on method LR > 0.01 My fitting method: 2dimMbcvs.E unbinned likelihood fit: L_Sig(Mbc, E) = S•( G (Mbc) • G (E) ) + S•( G (Mbc) • G (E) ) + S2•( G (Mbc) • G (E) )2 L_Bckg (Mbc, E) = B•ARG (Mbc) • POL_2 (E) L= L_Sig + L_Bckg 2 lost  lost All parameters are kept free. They are in agreement with MC Yields for 3 regions: S = 127.6 ± 15.3 fully reconstr. S = 728.7 ± 53.1 partially reconstr.: B0 D-D*0 K+ B+ D-D*+K+ B0 D*-D0K+ S2 = 972.8 ± 68.0 partially reconstr.: B0 D*-D*0 K+ B+ D*-D*+ K+

  10. B+ D0D0K+ LR > 0.04 plot for abs(E)<25MeV N/2MeV plot for Mbc >5.27 GeV N/7.5MeV Mbc E B+ D0D*0K+LR > 0.01 plot for abs(E)<45MeV plot forMbc >5.265GeV N/7.5MeV N/2MeV E Mbc JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 S = 94.4 ± 13.0 Stat_signif.= 9.3 eff= ( 4.80 ± 0.14 ) *10-4 BF = ( 1 .30 ± 0.18 ± 0.21 ) * 10-3 S = 49.4 ± 11.6 Stat_signif.= 7.0 eff= (0.39 ± 0.03 ) *10-4 BF = ( 8.84 ± 1.56 ± 1.5) * 10-3

  11. B0 D*-D*0K+LR > 0.0 plot for Mbc>5.27GeV plot for abs(E)<25MeV plot for abs(E)<45MeV plot for Mbc>5.27GeV N/2MeV S = 43.4 ± 10.1 Stat_signif.= 7.1 eff= (0.34± 0.03) *10-4 BF = ( 8.44 ± 1.97 ± 1.33) * 10-3 N/7.5MeV E Mbc E Mbc JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 B0 D*-D0 K+LR > 0.05 S = 86.9 ± 10.6 Stat_signif.= 12.8 eff= (1.91 ± 0.07 ) *10-4 BF = ( 2.99 ± 0.37 ± 0.53 ) * 10-3

  12. B+ D0D*+K0sLR > 0.005 B0 D*-D*+K0sLR > 0.0 plot for abs(E)<25MeV S = 40.2 ± 10.1 Stat_signif. = 7.5 plot for Mbc>5.27GeV N/7.5MeV N/2MeV eff= (0.46 ± 0.06 ) *10-4 BF = ( 5.80 ± 1.46 ± 1.18) * 10-3 S = 248.4 ± 22.6 D0(-,0,γ)D*+K0s (maybe can be useful for time dependent analysis) Mbc E JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 S = 17. v. clean (no LR-cut used) (good_K0S used, looser selection should give more)

  13. __ __ __ __ JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 BF summary NS ∑ (eff*BFsec) [10-4] BF [10-3] B+→ D0 D0 K+ 94.4 ± 13.0 4.99 1.25 ± 0.17 ± 0.20 B0→ D- D0 K+ 127.6 ± 15.3 6.98 1.68 ± 0.20 ± 0.25 B0→ D*- D0 K+ 87.0 ± 10.6 1.91 2.99 ± 0.37 ± 0.53 B+→ D0 D*+ K0 40.2 ± 10.1 0.46 5.80 ± 1.46 ± 1.18 B0→ D*- D*0 K+ 43.4 ± 10.1 0.34 8.44 ± 1.97 ± 1.33 B+→ D0 D*0 K+ 49.4 ± 11.6 0.39 8.84 ± 1.56 ± 1.50 B+→ D*0 D0 K+ 77.9 ± 13.7 (49.4 ± 11.6) 0.39 5.10 ± 0.90 ± 0.75

  14. Look for resonant structure: e.g.Dalitz plot & projections for M ( D-K+ ) fitted S (plotted above bckg) fitted B Mbcsideband normalized to background in signal box JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 B0 D-D0K+ forsignal-box events: abs(E) < 25 MeV Mbc > 5.27 GeV M(D0D- ) M( D0K+ ) M ( D0D- ) 2dim Mbcvs.E fit in M( D0K+ ) bins (to filter out bckg from Dalitz-plot projection) N / 10MeV S + B / 50MeV M( D0K+ ) M( D0K+ ) ( fitted S+B gives good description of data ) Sbins - Sglobal ~1

  15. D0K+resonant structure S / 50MeV PS corrected for (3770)D0D0 contribution) N = 8.1± 2.3 N = 30.2± 8.4 N = 15.1± 5.1 N = 80.2± 11.7 N = 30.2± 5.7 S / 50MeV M= 2.714 ± 0.008 GeV M= 2.723 ± 0.014 GeV M= 2.720 GeV fixed M= 2.728 ± 0.013 GeV M= 2.573 GeV fixed DSJ(2573) = 0.080± 0.020 GeV = 0.084± 0.029 GeV = 0.080 GeV fixed = 0.080 GeV fixed = 0.015GeV fixed B+ D*0D0K+ S / 50MeV SIGNAL with subtracted bckg JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 S / 50MeV B+ D0D0K+ M( D0K+ ) - M( D0K+ ) “right”-”wrong” flavor comb B0 D-D0K+ Peak @ ~2730 sth new! fitted functions: BW +&Phase Space shape from 3body signal MC with free normalization (to describe non-resonant component) M( D0K+ )

  16. Supporting evidence in D*K ? Partially reconstructed: B  D0D*0K+ +  lost N = 50.7± 15.3 N = 27.7± 8.0 N = 3.8± 1.6 M= 2.743 ± 0.009 GeV M= 2.613 ± 0.008 GeV M= 2.536 GeV fixed DS1(2536) ? = 0.050± 0.026 GeV = 0.005 GeV fixed (exp.resol) = 0.039± 0.014 GeV B+ D0D*+K0s S / 50MeV B  D(*)D*+K0s S / 50MeV Partially reconstructed: B+ D0D*+K0s+  lost PS for 3body MC M( D*0K+ ) SIGNAL with subtracted bckg JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 S / 25MeV B D(*)D*0K+ Fitted:G+BW+BW+&PS M( D*0K+ ) B+ D0D*0K+ S / 50MeV B0 D*-D*0K+ S / 50MeV M(D*+K0s)

  17. B+ D0D*0K+ S / 25MeV N = 25.0± 5.8 M = 3.770 GeV fixed  = 0.0253GeV fixed M ( D0D0) M ( D0 D*0) Phase Space shape from 3body signal MC JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Other results B+ D0D0K+ N / 50MeV Search for X(3872)→D0D*0 confirmation of (3770)→D0D0 (in 10MeV bin) : 2 evts observed, 1 evt expected bckg in B+ D0D0K+ 90% UL by counting method (Feldman-Cousins) BF(B+→K+X(3872))xBF(X(3872)→ D0D*0) <2.37x10-4 fitted functions: BW +sqrt(1-thr/x)*POL_3 BF(B+→K+ (3770))xBF((3770)→ D0D0) = ( 3.0 ± 0.7 ± 0.5 )x10-4

  18. B+ D0D0K+ B+ D0D*0K+ B+ D0D*+K0s JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Summary • I have shown preliminary results ( for ~140 fb-1 ): signals and BF’s for following channels: I studied D(*)KandD(*)0D0mass spectra: B0 D-D0K+ B0 D*-D0 K+ B0 D*-D*0K+ B+ D*-D*+K0s (no BF yet) X D0 K+@ ~2730 MeV and width ~80MeV observed (sth new !) inB0 D-D0K+ B+ D0D0K+ B+ D0D*0K+ evidence >3 for DsJ(2573) D0 K+in B0 D-D0K+ 90% UL BF(B+→K+X(3872))xBF(X(3872)→ D0D*0)<2.37x10-4 (3770)→D0D0in B+ D0D0K+ confirmed

  19. JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Backup slides

  20. JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 BF systematic error decomposition per mode

  21. _ _ _ _ JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 BF comparison with other measurements

  22. JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 BF systematic error contributions • negligible contributions from selection cuts (wide mass window cuts, no vtx cuts)

  23. JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Mbc&E “movie” from 2dim Mbcvs.E fit in M( D0K+ ) 50MeV bins for B0 D-D0K+signal 2.35 < M( D0K+ ) < 2.55 GeV 2.55 < M( D0K+ ) < 2.75 GeV 2.75 < M( D0K+ ) < 2.95 GeV

  24. JOLANTA BRODZICKA B  D(*) D(*) K BGMNov 21, 2003 Mbc&E “movie” from 2dim Mbcvs.E fit in M( D0K+ ) 50MeV bins for B0 D-D0K+signal 2.95 < M( D0K+ ) < 3.15 GeV 3.15 < M( D0K+ ) < 3.35 GeV

  25. M( D0K+ )for B+ D0D0K+ Bckgr : E sideband Bckgr : Mbc sideband JOLANTA BRODZICKA B  D(*) D(*) K CKRJan 15, 2004 LR > 0.04 LR > 0.1 N / 25MeV N / 25MeV

  26. LR > 0.04 LR > 0.01 N / 25MeV Bckgr : E sideband N / 25MeV Bckgr : Mbc sideband JOLANTA BRODZICKA B  D(*) D(*) K CKRJan 15, 2004 M( D0K+ )for B0 D-D0K+

  27. LR > 0.05 LR > 0.005 N / 25MeV Bckgr : E sideband N / 25MeV Bckgr : Mbc sideband JOLANTA BRODZICKA B  D(*) D(*) K CKRJan 15, 2004 M( D0K+ )for B0 D*-D0K+

  28. Bckgr : Mbc sideband JOLANTA BRODZICKA B  D(*) D(*) K CKRJan 15, 2004 Dalitz plot & projections for B0 D-D0K+ signal-box events N / 25MeV M(D0D- ) M( D0K+ ) N / 25MeV N / 25MeV

  29. Analysis details JOLANTA BRODZICKA B  D(*) D(*) K CKRJan 15, 2004

  30. Analysis details JOLANTA BRODZICKA B  D(*) D(*) K CKRJan 15, 2004

  31. Analysis details JOLANTA BRODZICKA B  D(*) D(*) K CKRJan 15, 2004

More Related