660 likes | 1.61k Views
Loan Default Model. Saed Sayad. Data Mining Steps. 1. Problem Definition. Build loan default prediction model for small business using the historical data to assess the likelihood of default by an obligor. Data Mining Team. Domain Expert. 2. Data Preparation. No of Cases: 35,500
E N D
Loan Default Model Saed Sayad www.ismartsoft.com
Data Mining Steps www.ismartsoft.com
1. Problem Definition Build loan default prediction model for small business using the historical data to assess the likelihood of default by an obligor. www.ismartsoft.com
Data Mining Team Domain Expert www.ismartsoft.com
2. Data Preparation • No of Cases: 35,500 • No of Defaults: 2,500 (7%) • Number of Variables: 25 • Total balance for all cases: $554,000,000 • Total balance for defaults: $58,000,000 (10.4%) www.ismartsoft.com
3. Data Exploration www.ismartsoft.com
Data Exploration - Univariate Months in Business www.ismartsoft.com
Data Exploration - Bivariate Months in Business and Default Default% www.ismartsoft.com
4. Modeling www.ismartsoft.com
Modeling - Classification DELQ Logistic Regression f Age Default Y or N Type www.ismartsoft.com
Logistic Model Logistic Regression Model Linear Model 1 Default 0 Months in Business www.ismartsoft.com
5. Evaluation www.ismartsoft.com
Evaluation – Variables Contribution www.ismartsoft.com
Evaluation - Confusion Matrix Positive Cases Negative Cases Predicted Positive Predicted Negative www.ismartsoft.com
Evaluation – Gain Chart Default% 100% 58% 10% Population% 10% 50% 100% www.ismartsoft.com
Return On Investment • Total Number of Loans = 8,167 • Total Number of Defaults = 560 • Total Balance for Defaults = $12,281,589 • Top 10% Random • Number of Defaults = 56 • Total Balance = $1,230,000 • Top 10% Model • Number of Defaults = 305 • Total Balance = $7,655,772 600% ROI www.ismartsoft.com
6. Deployment www.ismartsoft.com
Questions? www.ismartsoft.com